Long-term strategies to ensure a robust performance of the European electricity system

Paul Nahmmacher, Eva Schmid, Brigitte Knopf, Michael Pahle

ENERDAY, 17 April 2015
MOTIVATION
Motivation

The European electricity system is...

...characterized by high capital intensity and long-living assets.

Long-term planning is indispensable for investors, regulators, etc.

Several investment models exist:
LIMES-EU *Long-term investment model of the electricity sector*

Objective
- minimizing cumulated costs for electricity provision
- optimal investment and dispatch decisions for generation, storage and transmission capacities

Linear optimization model
- GAMS / CPLEX Solver

Technologies
- generation [*nuclear, hard coal (+ccs), lignite (+ccs), natural gas cc/gt, hydro, wind on-/offshore, solar pv/csp, biomass]*
- storage [*diurnal, seasonal*]
- transmission [*net transfer capacities between regions*]

Geographical scope & resolution
- EU28 countries w/o Malta & Cyprus
- plus Norway & Switzerland & Balkan

Temporal scope & resolution
- 5 year steps 2010 – 2050
- representative days per year
- perfect foresight

Policy equations
- CO₂ targets / RES targets
- EU or Member State level

Exogenous parameters
- electricity demand per region
- nuclear / ccs policies
- investment costs
- fuel costs
- …

Nahmacher et al. (2014)
Motivation

The European electricity system is...

...characterized by high capital intensity and long-living assets.

Long-term planning is indispensable for investors, regulators, etc.
Motivation

The European electricity system is...

1. characterized by high capital intensity and long-living assets.
 Long-term planning is indispensable for investors, regulators, etc.

2. constantly exposed to political, techno-economic and natural risks.
 It is crucial to design the system in a way that it ensures security of supply and minimum costs for a variety of future scenarios and shocks.
Motivation

The European electricity system is...

1. characterized by high capital intensity and long-living assets.
 Long-term planning is indispensable for investors, regulators, etc.

2. constantly exposed to political, techno-economic and natural risks.
 It is crucial to design the system in a way that it ensures
 security of supply and minimum costs
 for a variety of future scenarios and shocks.

What are the characteristics of a cost-efficient and robust European electricity system
considering a large variety of possible future shocks

and

given the assumption that the liberalized market does not provide for these shocks
what are (political) strategies needed to achieve such a system?
Scenarios – Strategies – Shocks

Scenarios

A scenario is a possible future development of external parameters. Scenarios can be expected but their probability is unknown. Investment decisions are taken based on scenarios.

Strategies

A strategy is an additional constraint that has to be satisfied when planning the electricity system.

Shocks

A shock is an unexpected sudden change of external parameters, such that assets of the electricity system cannot be changed accordingly. Shocks may result in a different dispatch, a shortage of electricity supply, and/or a failure to meet the emission target.
MODELLING FRAMEWORK
Absence of certainty

Three levels of incertitude (the absence of certainty)

<table>
<thead>
<tr>
<th>Risk</th>
<th>Uncertainty</th>
<th>Ignorance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possibility is known</td>
<td>Possibility is known</td>
<td>Nothing is known</td>
</tr>
<tr>
<td>Probability is known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic approaches</td>
<td>Scenario analysis</td>
<td>Diversity</td>
</tr>
</tbody>
</table>

Stirling (1994)
Scenarios

Optimisation for each scenario separately

• most studies usually cover less than five possible future scenarios

• what is the „right“ investment pathway?

Paul Nahmmacher
PIK – Energy Strategies Europe and Germany
Scenarios

Optimisation for each scenario separately
- most studies usually cover less than five possible future scenarios
- what is the „right“ investment pathway?

Stochastic approaches

Multiple possible future states are considered within one optimization run
- only limited number of future states computationally possible
- need to assign probabilities

Both scenario analysis and stochastic analysis find the optimal solution for a specific set of assumptions and usually focus on a very limited number of futures
Robust Decision Making

Lempert et al. (2006):

A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios

- “Robustness is an important criterion for good decisions under uncertainty” (Robustness vs. Optimality)

- “A robust strategy performs relatively well – compared to alternatives – across a wide range of plausible futures”

- Performance of a strategy for a specific scenario is measured by its regret (i.e. additional cost) compared to the best-performing strategy

Lempert et al. (2006)
LIMES-EU Long-term investment model of the electricity sector

Objective
- minimizing cumulated costs for electricity provision
- optimal investment and dispatch decisions for generation, storage and transmission capacities

Linear optimization model
- GAMS / CPLEX Solver

Technologies
- generation [nuclear, hard coal (+ccs), lignite (+ccs), natural gas cc/gt, hydro, wind on-/offshore, solar pv/csp, biomass]
- storage [diurnal, seasonal]
- transmission [net transfer capacities between regions]

Geographical scope & resolution
- EU28 countries w/o Malta & Cyprus
- plus Norway & Switzerland & Balkan

Temporal scope & resolution
- 5 year steps 2010 – 2050
- representative days per year
- perfect foresight

Policy equations
- CO₂ targets / RES targets
- EU or Member State level

Exogenous parameters
- electricity demand per region
- nuclear / ccs policies
- investment costs
- fuel costs
- …

Nahmmacher et al. (2014)
Scenarios – Strategies – Shocks

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Strategies</th>
<th>Shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>nuclear cost</td>
<td>none default</td>
<td>low wind / solar</td>
</tr>
<tr>
<td>ccs cost</td>
<td>diversity in fuels default</td>
<td>heat wave</td>
</tr>
<tr>
<td>wind FLH</td>
<td>import of electricity default</td>
<td>gas supply</td>
</tr>
<tr>
<td>solar investment cost</td>
<td>redundant (reserve) capacities target on excess capacity</td>
<td>gas price</td>
</tr>
<tr>
<td>biomass price</td>
<td>transmission expansion lower bound on transmission expansion</td>
<td>- deviation from expected gas price</td>
</tr>
<tr>
<td>gas price</td>
<td>RES-share lower bound on RES-share</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nuclear power lower bound on nuclear capacity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>storage lower bound on storage capacity</td>
<td></td>
</tr>
</tbody>
</table>

- default / high
- default / low
- default
- upper bound on share of single fuel
- upper bound on share of imported electricity
- target on excess capacity
- lower bound on transmission expansion
- lower bound on RES-share
- lower bound on nuclear capacity
- lower bound on storage capacity
(PRELIMINARY) RESULTS
vRES shock

- Excess capacities avoid shortage of supply but add emissions
vRES shock

- Installation of excess capacities most viable option
Heat wave

- Excess capacities are the best way to mitigate the impacts of a heat wave.
- European-wide RES-target also helpful.
Heat wave

- Excess capacities are only viable, when high VOLL.
- European wide RES-target viable.
Transmission shock

- Overall, transmission shock no serious threat for security of supply
- Excess capacities increase security of supply
Transmission shock

- Excess capacities too expensive
- „No strategy“ is best

Overall costs
(VOLL = 500 €/MWh)

Overall costs
(VOLL = 1000 €/MWh)

Overall costs
(VOLL = 2000 €/MWh)
Gas supply (quantity) shock

- A RES-target mitigates the negative impact of a shortage in gas supply.
- NTC expansion also helpful.

![Shortage of supply and excess CO₂ emissions graphs](image-url)
Gas supply (quantity) shock

- A RES-target mitigates the negative impact of a shortage in gas supply.
- NTC expansion also helpful.
Gas price shock

- A gas price shock does not pose a threat to the security of supply
Gas price shock

- The additional costs for implementing the considered strategies are higher than their benefits in case of a gas price shock.
CONCLUSION
Conclusion

• Analysis of strategies for a large variety of possible shocks to the electricity sector
• Combination of optimization model with robustness analysis
• Useful in case that stochastic analysis fails to provide meaningful results
 • when probabilities of the shocks are unknown
 • when there are more than only a few possible futures.

• Viable strategies against considered shocks:
 • highly depending on VOLL
 • installation of excess capacities / RES expansion

• Work in progress: Suggestions for additional scenarios, strategies and shocks are welcome!
Thank you!

paulnah@pik-potsdam.de

The research leading to these results has received funding from the European Union’s Seventh Framework Programme under grant agreement n° 308481.