

Analysis of Incentive-based Demand Response Mechanism

ENERDAY - 8th April 2016

Robert Basmadjian, Florian Niedermeier, and Hermann de Meer

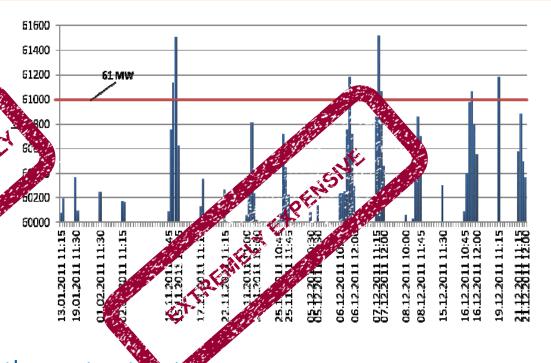
Motivation (1)

- In 2007 the energy consumed by data centres (DC) in Western Europe was 56 TWh and is projected to increase to over 100 TWh per year by 2020
- ICT resources of DCs are over-provisioned to cope with workload fluctuations and to guarantee QoS
 - Almost 70% of servers in DCs are in idle state
- Servers contribute 40% to overall DC energy consumption
 - The other 60% is due to storage, networking devices and cooling equipment

Motivation (2)

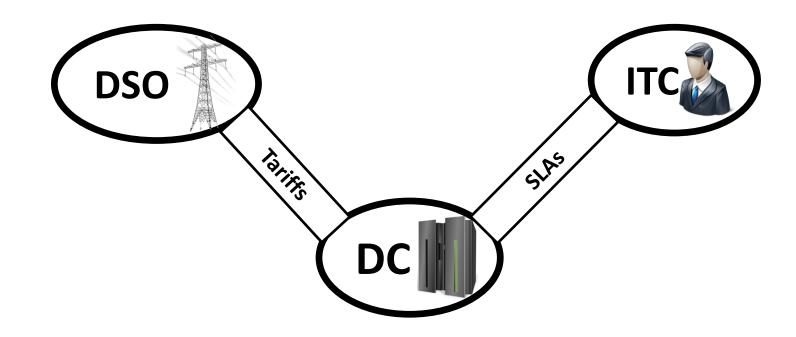
- Demand Response (DR) is used in electricity grids to manage costumers' energy consumption during power shortage
- Demand Response Research Center in LBNL analyzed DR for the case of DCs and showed that:
 - DCs are very good candidates to participate in DR due to:
 - Significant energy demand
 - Highly automated IT infrastructure providing **flexibilities**
- Major drawback of today's market condition is the inflexibility of electricity tariffs
 - Making DR in practical for DCs

Roadmap

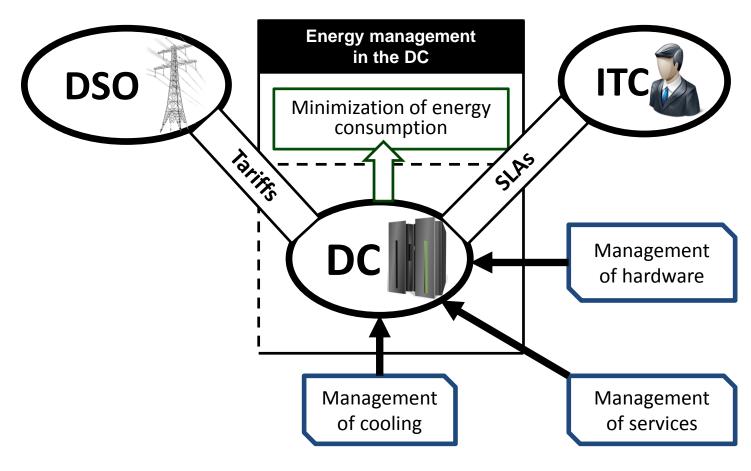

- Problem Description
- Our Approach
 - Current Situation
 - Energy Management
 - Green Agreements
- Cost-benefit Analysis
 - Methodology
 - Obtained Results
- Conclusion

Problem Description

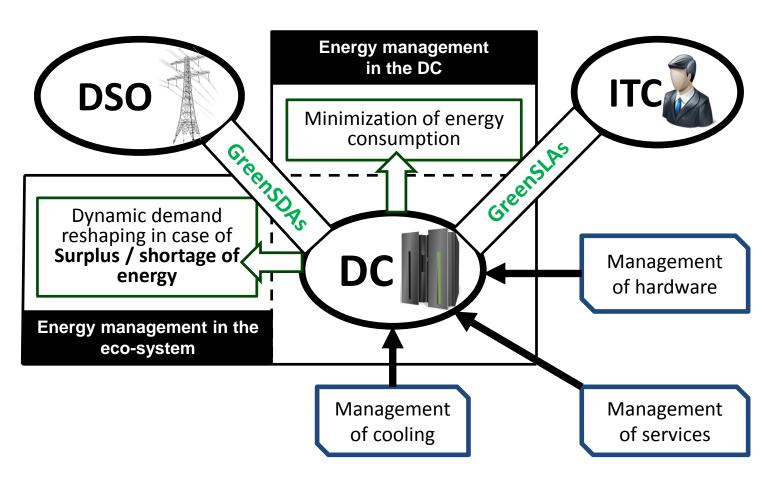
- Distribution SystemOperators (DSO) have:
 - Local power generation sources
 - Renewable
 - Fossil-bedgenerators
 - Copyract with Energy
 Supplies (ES)



- In tudied use case, the contract says
 - Maximum power demand is 61 MW
 - Additional 1 KW of demand (even for 1 sec) is assumed to cost 54 €
 (2011)

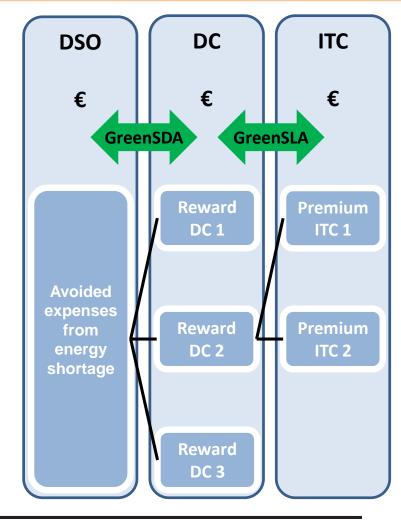

Current Situation

Energy Management



Green Agreements

Green Agreements



Cost-benefit Analysis

Methodology

- Analysis was performed on 3 steps
 - No energy management
 - With GreenSDA
 - Both with GreenSDA and GreenSLA
- DSO
 - Costs of 27918 € to cover a power shortage of 517 kW (exceeding 61 MW in 2011)
- DC
 - We studied the dependent and independent flexibilities of Innowerk-IT
 - 55 kW of power reduction
- Assumption
 - Maximum static reward of 2500 €

Cost-benefit Analysis

Obtained Results

Type of Benefit	Euro
Static reward for one DC of type Innowerk-IT	250,00 €
Dynamic reward	2216,52 €
Saved Energy Per Flexibility Internal	0€
Saved Energy Per Flexibility External	0,48 €
Total	2467,00 €

Type of Cost	Euro
DC Penalty	0€
Flexibility Recovery Cost	4,03 €
Static ITC Reward	125,00 €
Dynamic ITC Reward	42,54 €
Total	171,57 €

- Innowerk IT's profit would be 2467 171,57 = 2295,43
- All the detailed results can be found at
 - http://www.all4green-project.eu/sites/default/files/ documents/
 - D4.3 Section III1.4

Conclusion

- DR schemes for the case of DCs are attractive through incentive-based mechanisms
 - GreenSDAs and Green SLAs
 - Reward and penalty schemes
- Reward and penalty schemes contribute to incentivize parties in DR participation
 - The collaboration scheme
 - Is beneficial for three parties (DSO, DC, ITC)
 - Induces a WIN/WIN/WIN situation