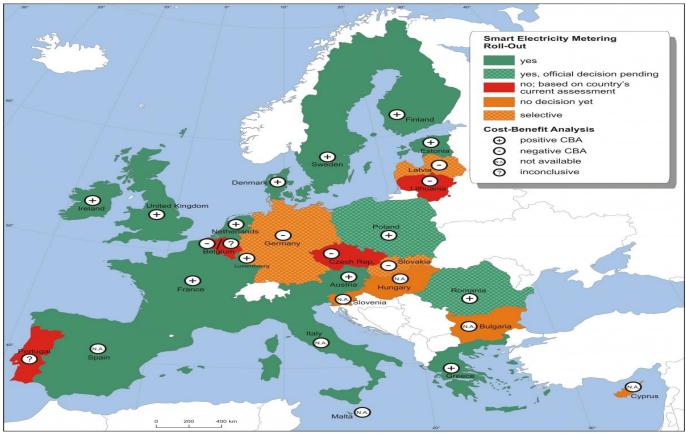


Real-Time Electricity Pricing with Heterogeneous Consumers and Variable Renewable Energy Supply: Welfare and Distributional Effects

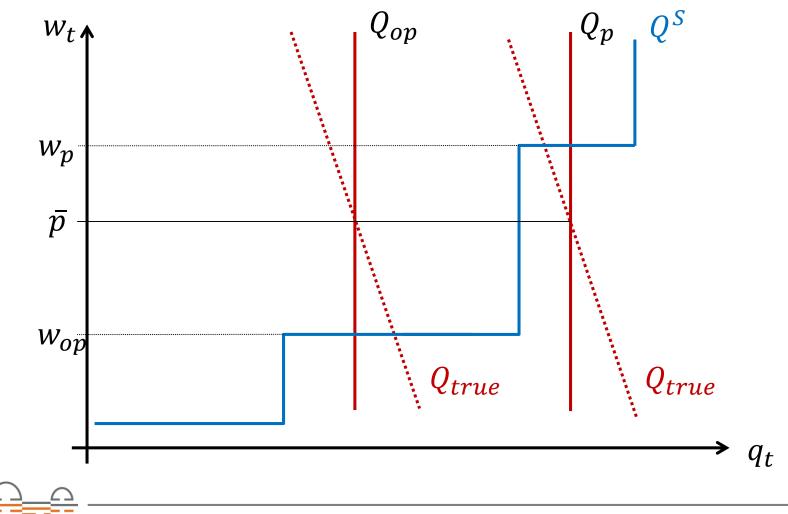
Christian Gambardella Michael Pahle RD III/PIK Potsdam/TU Berlin


ENERDAY 2016

11th Conference on Energy Economics and Technology, 8th April 2016

Motivation

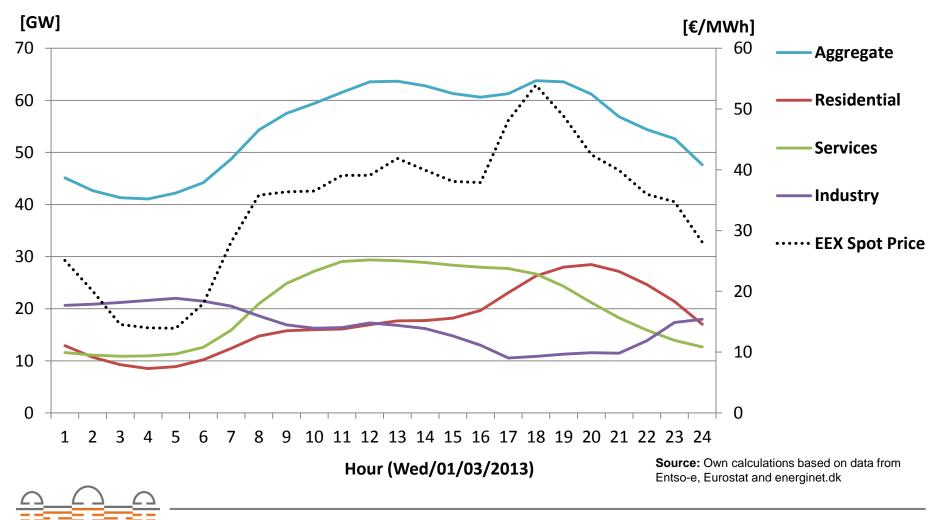
- a) vRES entry causes growing need/benefit of price responsive demand.
- b) Large-scale smart meter roll-out in EU power systems.
- c) How to catch most of potential welfare gains from real-time pricing?



Source: European Commission JRC and DG ENER

Motivation

Lack of **Real-time pricing (RTP)** is the **fundamental market flaw**


Allocative Inefficiency in real electricity markets from flat pricing:

Motivation

Problem: Social Acceptance Barriers to Dynamic Retail Pricing

Largest efficiency gains may stem from potential "losers" of RTP:

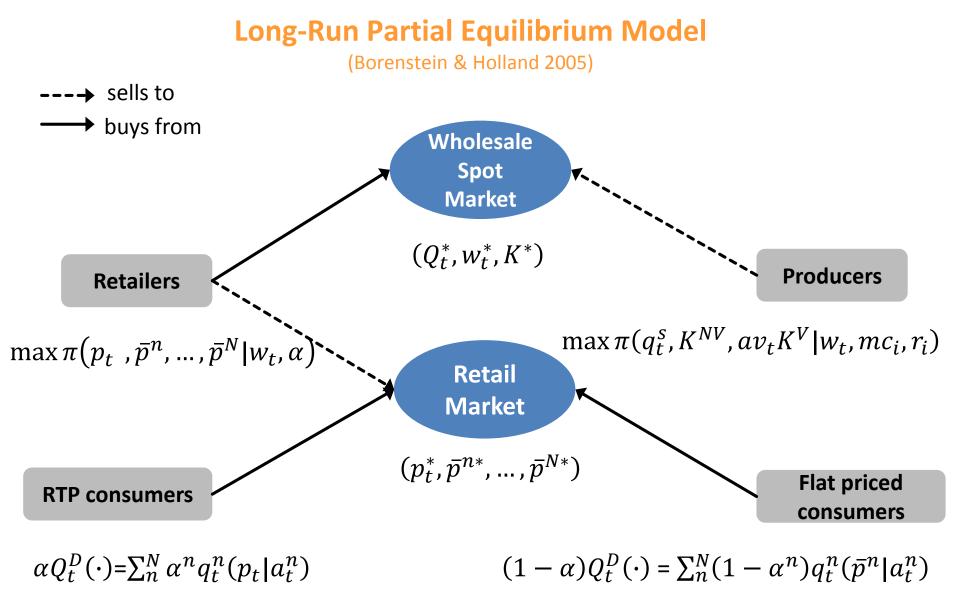
Motivation Research Questions

- 1. How does the amount of **redistributed costs from RTP adoption** change in a market with variable electricity supply?
- 2. What are the **welfare gains left on the table if mainly large (industrial) consumers with "flat" demand profiles** adopt RTP ?

Content

1. Motivation

2. Method


- Comparative statics
- Numerical partial equilibrium model
- Data
- 3. Preliminary Results
- 4. Conclusion

METHOD

Christian Gambardella, Sustainable Solutions, PIK

$$q_t^d(p) = a_t p^{-\varepsilon}$$

Method

Perfect competition in retail sector (zero-profits)

• Retail **real-time prices** p_t in hour t:

$$\pi = \sum_t^T (p_t - w_t) * \alpha Q_t^D (p_t) = 0$$

• Flat rates for each consumer type \bar{p}^n (no cross subsidization):

$$\pi^{n} = \sum_{t}^{T} (\bar{p}^{n} - w_{t}) * (1 - \alpha^{n}) * q_{t}^{n} (\bar{p}^{n} | \alpha^{n}) = 0, \ \forall n \in N$$

• Uniform flat price \bar{p} (cross subsidization):

$$\pi = \sum_{t}^{T} (\bar{p} - w_t) * (1 - \alpha) Q_t^D(\bar{p}) = 0$$

Method

Create heterogeneous consumption time series ...

Hour	Residential [GW]	Services&Trade [GW]	Industry [GW]	Total Demand [GW]
1	15.09	12.25	12.54	39.87
2	13.89	12.04	12.45	38.39
:	:	:	:	:
8760	16.82	13.03	17.21	47.06
Total [GWh]	136,000 (27%)	145,835 (29%)	224,269 (44%)	506,104

- Entso-e: Total hourly electricity demand data (2013)
- **Eurostat:** Final annual sector-specific electricity consumption
- BDEW: Standard Load Profiles (SLPs) H0 (Residential) and G0 (Trade & Services); Industry demand equals residual demand

PRELIMINARY RESULTS

Christian Gambardella, Sustainable Solutions, PIK

Results

With higher vRES supply, total redistribution of costs is lower

Bill changes if all customers switched to RTP w/o changing consumption behaviour*:

vRES share in GEC	Residential [€ mio/year]	Services [€ mio/year]	Industry [€ mio/year]	Total Redistribution [€ mio/year]
0%	-8.40 (-0.15%)	795.74 (13.62%)	-790.98 (-8.80%)	799.40
~40%	247.40 (1.82%)	414.83 (2.84%)	-662.45 (-2.95%)	662.45
~50%	182.28 (1.19%)	209.04 (1.27%)	-391.31 (-1.54%)	391.31
~60%	114.10 (0.59%)	-43.39 (-0.21%)	-70.62 (-0.22%)	114.00

*Assumption: Uniform flat rate

Results

The "peakier" the demand pattern, the higher the overall consumer surplus gains from RTP

Total consumer surplus *gains* for given *aggregate* RTP shares [€ mio./year]

α	α^n	No vRES	60% vRES in GEC
	Residential (34%)	164.27	249.24
10% RTP Share	Services&Trade (32%)	171.25	237.55
KIT Share	Industry (21%)	119.52	190.79
	Residential (72%)	330.85	502.83
20% RTP Share	Services&Trade (67%)	351.80	488.14
KIT Share	Industry (44%)	254.18	405.03

- Surplus gains from putting *only industrial customers* on RTP to achieve $\alpha = 10\%$ or $\alpha = 20\%$ are ~20% lower on average.
- Surplus gains are on average 33% higher with 60% vRES share.

Preliminary Results

Annual surplus gains from switching to RTP **per average kWh** consumed by **switchers** to RTP:

Scenario I ($lpha^n=50\%$)	Residential	Services	Industry	All
	[€/kWh*a]	[€/kWh*a]	[€/kWh*a]	[€/kWh*a]
No vRES	22.27	21.49	15.05	14.12
	(240.25)*	(266.69)	(288.28)	(681.45)
~60% in GEC	30.51	28.04	24.05	24.51
	(361.48)	(369.88)	(458.70)	(1081.52)

*Total gains in brackets in mio.€/year

- "Peakier" consumers switching to RTP gain more per average kWh consumed (20% to 30%).
- Benefits are on average about 30% higher in the vRES market.

CONCLUSION

Conclusion & Outlook

- Efficiency gains from adopting RTP increase significantly with vRES shares.
- **Potential redistribution of costs becomes less important** with high vRES shares.
- **Significant portion of potential welfare gains may be lost** if mainly largest but *"*flat consuming" (industrial) consumers adopt RTP (or similar mechanisms).

What to do with this:

- General aim: providing insights for designing measures to induce as much efficiency in retail pricing (adoption of RTP) as possible.
- Are there other, e.g. cognitive barriers to RTP adoption, that should be included in the model (Internalities)?

References

Alcott, H., 2012. Real-Time Pricing and Electricity Market Design. Working Paper, NYU (March).

Borenstein, S., 2005. Time-varying retail electricity prices: Theory and practice. In: Electricity deregulation: Choices and Challenges. Available at: http://faculty.haas.berkeley.edu/BORENSTE/download/RTPchap05.pdf [Accessed April 13, 2015].

- **Borenstein, S., Holland, S., 2005.** *On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices*. RAND Journal of Economics, Vol. 36, No. 3, pages 469-493.
- **Borenstein, S., 2005.** The Long-Run Efficiency of Real-Time Electricity Pricing. The Energy Journal, Vol. 26., No. 3 (April), pages 93-116.
- **Borenstein, S., 2007.** Wealth transfers among large customers from implementing real-time retail electricity pricing. Energy Journal, 28(2), pp.131–149.
- **Borenstein, S., 2007**. *Customer risk from real-time retail electricity pricing: Bill volatility and hedgability.* Energy Journal, 28(2), pp.111–130.

Connect Energy Economics, 2015. *Aktionsplan Lastmanagement. Endbericht einer Studie von Connect Energy Economics.* Studie im Auftrag von **Agora Energiewende**. www.agora-energiewende.de

References

Faruqui, A., Hledik, R. & Palmer, J., 2012. Time-varying and dynamic rate design. Report by The Regulatory Assistance Project (RAP) and The Brattle Group. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Time-Varying+and+Dynamic+Rate+Design#0 [Accessed May 7, 2015].

Leautièr, T., 2012. Is Mandating "Smart Meters "smart? TSE Working Paper 12-341.

- Mills, Andrew and Wiser, R., 2014. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels. Available at: http://escholarship.org/uc/item/8s47x8tx.pdf [Accessed May 7, 2015].
- Schill, W.-P., 2013. Residual Load, Renewable Surplus Generation and Storage Requirements in Germany. DIW Discussion Paper 13/16.

