Real-Time Electricity Pricing with Heterogeneous Consumers and Variable Renewable Energy Supply: Welfare and Distributional Effects

Christian Gambardella
Michael Pahle
RD III/PIK Potsdam/TU Berlin

ENERDAY 2016
Motivation

a) vRES entry causes growing need/benefit of price responsive demand.

b) Large-scale smart meter roll-out in EU power systems.

c) How to catch most of potential welfare gains from real-time pricing?

Source: European Commission JRC and DG ENER
Motivation
Lack of Real-time pricing (RTP) is the fundamental market flaw

Allocative Inefficiency in real electricity markets from flat pricing:

\[w_t \]
\[Q_{\text{op}} \]
\[Q_p \]
\[Q^S \]
\[Q_{\text{true}} \]
\[Q_{\text{true}} \]

Christian Gambardella, Sustainable Solutions, PIK
Motivation

Problem: Social Acceptance Barriers to Dynamic Retail Pricing

Largest efficiency gains may stem from potential “losers” of RTP:

[Graph showing EEX Spot Price, Aggregate, Residential, Services, Industry, and Hour (Wed/01/03/2013)]

Source: Own calculations based on data from Entso-e, Eurostat and energinet.dk
Research Questions

1. How does the amount of redistributed costs from RTP adoption change in a market with variable electricity supply?

2. What are the welfare gains left on the table if mainly large (industrial) consumers with „flat“ demand profiles adopt RTP?
Content

1. Motivation
2. Method
 • Comparative statics
 • Numerical partial equilibrium model
 • Data
3. Preliminary Results
4. Conclusion
METHOD
Long-Run Partial Equilibrium Model
(Borenstein & Holland 2005)

- Retailers sells to RTP consumers
- Retailers buys from Producers
- Producers

Retail Market

\(Q_t^*, w_t^*, K^* \)

\(p_t^*, \bar{p}_n^*, \ldots, \bar{p}_N^* \)

Wholesale Spot Market

\(\max \pi(p_t, \bar{p}_n, \ldots, \bar{p}_N | w_t, \alpha) \)

\(\max \pi(q_t^s, K^{NV}, a \nu_t K^V | w_t, m_c_i, r_i) \)

\(\alpha Q_t^D(\cdot) = \sum_n^N \alpha^n q_t^n(p_t | a_t^n) \)

\((1 - \alpha) Q_t^D(\cdot) = \sum_n^N (1 - \alpha^n) q_t^n(\bar{p}_n^n | a_t^n) \)

\(q_t^d(p) = a_t p^{-\varepsilon} \)
Method

Perfect competition in retail sector (zero-profits)

- Retail **real-time prices** p_t in hour t:

$$ \pi = \sum_t^T (p_t - w_t) \cdot \alpha Q^D_t(p_t) = 0 $$

- **Flat rates for each consumer type** \bar{p}^n (no cross subsidization):

$$ \pi^n = \sum_t^T (\bar{p}^n - w_t) \cdot (1 - \alpha^n) \cdot q^n_t(\bar{p}^n | \alpha^n) = 0, \forall n \in N $$

- **Uniform flat price** \bar{p} (cross subsidization):

$$ \pi = \sum_t^T (\bar{p} - w_t) \cdot (1 - \alpha) Q^D_t(\bar{p}) = 0 $$
Method
Create heterogeneous consumption time series ...

<table>
<thead>
<tr>
<th>Hour</th>
<th>Residential [GW]</th>
<th>Services&Trade [GW]</th>
<th>Industry [GW]</th>
<th>Total Demand [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.09</td>
<td>12.25</td>
<td>12.54</td>
<td>39.87</td>
</tr>
<tr>
<td>2</td>
<td>13.89</td>
<td>12.04</td>
<td>12.45</td>
<td>38.39</td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
</tr>
<tr>
<td>8760</td>
<td>16.82</td>
<td>13.03</td>
<td>17.21</td>
<td>47.06</td>
</tr>
</tbody>
</table>

| Total [GWh] | 136,000 (27%) | 145,835 (29%) | 224,269 (44%) | 506,104 |

- **Entso-e**: Total hourly electricity demand data (2013)
- **Eurostat**: Final annual sector-specific electricity consumption
- **BDEW**: Standard Load Profiles (SLPs) **H0 (Residential)** and **G0 (Trade & Services)**; Industry demand equals residual demand
PRELIMINARY RESULTS
Results

With higher vRES supply, total redistribution of costs is lower

Bill changes if all customers switched to RTP w/o changing consumption behaviour*:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>-8.40 (-0.15%)</td>
<td>795.74 (13.62%)</td>
<td>-790.98 (-8.80%)</td>
<td>799.40</td>
</tr>
<tr>
<td>~40%</td>
<td>247.40 (1.82%)</td>
<td>414.83 (2.84%)</td>
<td>-662.45 (-2.95%)</td>
<td>662.45</td>
</tr>
<tr>
<td>~50%</td>
<td>182.28 (1.19%)</td>
<td>209.04 (1.27%)</td>
<td>-391.31 (-1.54%)</td>
<td>391.31</td>
</tr>
<tr>
<td>~60%</td>
<td>114.10 (0.59%)</td>
<td>-43.39 (-0.21%)</td>
<td>-70.62 (-0.22%)</td>
<td>114.00</td>
</tr>
</tbody>
</table>

*Assumption: Uniform flat rate
Results
The „peakier“ the demand pattern, the higher the overall consumer surplus gains from RTP

Total consumer surplus gains for given aggregate RTP shares [€ mio./year]

<table>
<thead>
<tr>
<th>α</th>
<th>α^n</th>
<th>No vRES</th>
<th>60% vRES in GEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% RTP Share</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential (34%)</td>
<td>164.27</td>
<td>249.24</td>
<td></td>
</tr>
<tr>
<td>Services&Trade (32%)</td>
<td>171.25</td>
<td>237.55</td>
<td></td>
</tr>
<tr>
<td>Industry (21%)</td>
<td>119.52</td>
<td>190.79</td>
<td></td>
</tr>
<tr>
<td>20% RTP Share</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential (72%)</td>
<td>330.85</td>
<td>502.83</td>
<td></td>
</tr>
<tr>
<td>Services&Trade (67%)</td>
<td>351.80</td>
<td>488.14</td>
<td></td>
</tr>
<tr>
<td>Industry (44%)</td>
<td>254.18</td>
<td>405.03</td>
<td></td>
</tr>
</tbody>
</table>

- Surplus gains from putting only industrial customers on RTP to achieve $\alpha = 10\%$ or $\alpha = 20\%$ are $\sim20\%$ lower on average.

- Surplus gains are on average 33% higher with 60% vRES share.
Preliminary Results

Annual surplus gains from switching to RTP per average kWh consumed by switchers to RTP:

<table>
<thead>
<tr>
<th>Scenario I ((\alpha^n = 50%))</th>
<th>Residential [€/kWh*a]</th>
<th>Services [€/kWh*a]</th>
<th>Industry [€/kWh*a]</th>
<th>All [€/kWh*a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No vRES</td>
<td>22.27</td>
<td>21.49</td>
<td>15.05</td>
<td>14.12</td>
</tr>
<tr>
<td></td>
<td>(240.25)*</td>
<td>(266.69)</td>
<td>(288.28)</td>
<td>(681.45)</td>
</tr>
<tr>
<td>~60% in GEC</td>
<td>30.51</td>
<td>28.04</td>
<td>24.05</td>
<td>24.51</td>
</tr>
<tr>
<td></td>
<td>(361.48)</td>
<td>(369.88)</td>
<td>(458.70)</td>
<td>(1081.52)</td>
</tr>
</tbody>
</table>

*Total gains in brackets in mio.€/year

- „Peakier“ consumers switching to RTP gain more per average kWh consumed (20% to 30%).

- Benefits are on average about 30% higher in the vRES market.
CONCLUSION
Conclusion & Outlook

- Efficiency gains from adopting RTP increase significantly with vRES shares.
- Potential redistribution of costs becomes less important with high vRES shares.
- Significant portion of potential welfare gains may be lost if mainly largest but „flat consuming” (industrial) consumers adopt RTP (or similar mechanisms).

What to do with this:

- **General aim**: providing insights for designing measures to induce as much efficiency in retail pricing (adoption of RTP) as possible.
- Are there other, e.g. **cognitive barriers to RTP adoption**, that should be included in the model (**Internalities**)?
References

References

