

Probabilistic methodology for adequacy assessment under uncertainty for a multi-

region system

Julia Bellenbaum, Benjamin Böcker, <u>Thomas Kallabis</u>, Christoph Weber

Enerday, 27.04.2018

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Motivation

Motivation

- Reliability monitoring predominantly national
- Current developments
 - growing shares of intermittent electricity generation from RES
 - increasing uncertainties, need for (conventional) back-up capacity
 - proceeding integration of electricity markets
 - increasing electricity exchange btw. countries
- Idea: monitoring reliability within a multinational framework
- Question: does it matter for assessing adequacy, and if yes, how much?

Motivation	1
Methodology	2
Application	3
Conclusion	4

Methodology overview

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Methodology

I. Stochastic characterisation

Methodology

 Transformation to uniformly distributed values

UNIVERSITÄT

DUISBURG

Offen im Denken

Source: http://shiny.hydrology.ruhr-uni-bochum.de:3838/

 Dependencies from marginal distributions

I. Stochastic characterisation: exemplary results

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Methodology

Quantile regression for PV in Germany

Copula correlation matrix (wind in BE, DE, FR, NL)

II. Monte-Carlo Simulation

Offen im Denken

Methodology

IV.Assessment indicators

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Methodology

Application

- Scope
 - Countries: DE, BE, NL, FR
 - Year: 2025
- Data
 - Characterisation: historical time series
 - Analysis: G+T capacities, demand, PTDF matrix

UNIVERSITÄT

DUISBURG

Offen im Denken

- Scenarios
 - Isolated: separate countries interconnection
 - Interconnected: FBMC-based, spatial interdependencies
 - Sensitivity: spatial interdependencies
 - Sensitivity: seasonal availability of conventional Gcap

Application: Analysis of security of supply

UNIVERSITÄT D_U_I_S_B_U R G

Offen im Denken

Application

	isolated	Connected
BE	1.3E-02	2.1E-06
DE	4.3E-06	2.8E-07
FR	7.9E-05	7.5E-06
NL	3.3E-04	2.2E-07
mean	3.4E-03	2.5E-06

5/10/2017

UNIVERSITĂT

Offen im Denken

Application

House of Energy Markets & Finance

Conclusions and further research

D U I S B U R G E S S E N

UNIVERSITÄT

Offen im Denken

Conclusion

- Conclusions
 - Probabilistic methodology for adequacy assessment in multi-national framework
 - Compensation of shortfalls through other countries
 - Sensitivity: spatially interdependent uncertainties
 - Sensitivity: seasonal patterns of conventional availability

- Further research
 - Temporal interdependencies
 - Impact of shut-down / phase-out of single technologies

- \rightarrow reduces LOLP significantly
- \rightarrow decrease system adequacy
- \rightarrow severe impact
- \rightarrow coordinated revision scheduling

Room for Q&A

Thomas Kallabis

House of Energy Markets and Finance University Duisburg-Essen Berliner Platz 6-8, 45127 Essen +49 201 3477 thomas.kallabis@uni-due.de

Application: Analysis of security of supply

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Application

Sensitivities spatial interdependencies and FBMC

		Mean LOLP	
	isolated	interconnected	
	Isolated	FE	B/Cor
BE	1.3E-02		2.1E-06
DE	4.3E-06		2.8E-07
FR	7.9E-05		7.5E-06
NL	3.3E-04		2.2E-07
mean	3.4E-03		2.5E-06

		Relative EENS	
	isolated	interconnected	
	isolated		FB/Cor
BE	8.3E-04		7.8E-08
DE	6.9E-08		6.5E-09
FR	3.3E-06		2.7E-07
NL	1.1E-05		5.2E-09
mean	2.1E-04		9.1E-08

