European Power System Long-term development with Flexibility
A study on demand projections

Héctor Marañón-Ledesma

Norwegian University of Science and Technology, Center for Sustainable Energy Studies
Department of Industrial Economics and Technology Management, IØT

27 April 2018
Outline

1. EMPIRE (European Model for Power Investments with high shares of Renewable Energy)
2. Uncertainty - Where?
3. Multi-horizon Stochastic Optimization
4. Results
EMPIRE (European Model for Power Investments with high shares of Renewable Energy) Uncertainty - Where? Multi-horizon Stochastic Optimization Results

Hector M-L NTNU CenSES

Multi-horizon Stoch. Plan.
Multi-horizon Scenario Tree

Reduces tree size by a factor of

(# of nodes)^# of strategic periods
Multi-horizon Stochastic Program

Modelling Assumptions
Multi-horizon Stochastic Program

- Long-term dynamics (multi-period investments)

Modelling Assumptions
Multi-horizon Stochastic Program

- Long-term dynamics (multi-period investments)
- Short-term dynamics (multi-period operation)

Modelling Assumptions
Multi-horizon Stochastic Program

- Long-term dynamics (multi-period investments)
- Short-term dynamics (multi-period operation)
- Short-term and long-term uncertainty

Modelling Assumptions
Multi-horizon Stochastic Program

- Long-term dynamics (multi-period investments)
- Short-term dynamics (multi-period operation)
- Short-term and long-term uncertainty

Modelling Assumptions

- Perfect Competition (multi-period investments)
Multi-horizon Stochastic Program

- Long-term dynamics (multi-period investments)
- Short-term dynamics (multi-period operation)
- Short-term and long-term uncertainty

Modelling Assumptions

- Perfect Competition (multi-period investments)
- Generation capacity aggregated by technology
Multi-horizon Stochastic Program

- Long-term dynamics (multi-period investments)
- Short-term dynamics (multi-period operation)
- Short-term and long-term uncertainty

Modelling Assumptions

- Perfect Competition (multi-period investments)
- Generation capacity aggregated by technology
- Investments are continuous outcomes
Modelling Assumptions

- Perfect Competition (multi-period investments)
- Generation capacity aggregated by technology
- Investments are continuous
- Lines are independent
- Elastic demand (Demand Response)
Modelling Assumptions

- Perfect Competition (multi-period investments)
- Generation capacity aggregated by technology
- Investments are continuous
- Lines are independent
- Elastic demand (Demand Response)
- Uncertain foresight of future
Uncertainty - Where?

- Wind and solar generation
- Fuel prices
- CO2 prices
- Energy policy
- Technology costs
- Energy demand
Electricity Demand Projections

- PRIMES / EU reference case
- GCAM
- TIMES
Long-term Demand Uncertainty Approaches

- Probabilistic Pathways Sets
- Pathway Uncertainty Estimation
- Stochastic Partial Decomposition Approach
DR costs

<table>
<thead>
<tr>
<th>Technology</th>
<th>Investment Cost (€/kW)</th>
<th>Fixed OM (€/kW) pr. yr.</th>
<th>Variable OM (€/MWh)</th>
<th>Efficiency</th>
<th>Fuel Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeatingAC</td>
<td>250</td>
<td>7,50</td>
<td>10</td>
<td>0,97</td>
<td></td>
</tr>
<tr>
<td>HVAC-ComInd</td>
<td>10</td>
<td>0,30</td>
<td>5</td>
<td>0,97</td>
<td></td>
</tr>
<tr>
<td>CoolingWater-ComInd</td>
<td>5</td>
<td>0,15</td>
<td>20</td>
<td>0,98</td>
<td></td>
</tr>
<tr>
<td>ProcessShift-Ind</td>
<td>0</td>
<td>0,00</td>
<td>150</td>
<td>0,99</td>
<td></td>
</tr>
<tr>
<td>WashingEq-Res</td>
<td>30</td>
<td>0,90</td>
<td>50</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>StorHeat-ResCom</td>
<td>20</td>
<td>0,60</td>
<td>10</td>
<td>0,98</td>
<td></td>
</tr>
<tr>
<td>ProcessShed-Ind</td>
<td>0</td>
<td>0,00</td>
<td>1000</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>Battery Storage (Li-ion)</td>
<td>1195</td>
<td></td>
<td></td>
<td>0,88</td>
<td></td>
</tr>
<tr>
<td>Battery Storage (Zn)</td>
<td>588</td>
<td></td>
<td></td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>Pumped Storage Hydro</td>
<td>1000</td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>Gas CCGT</td>
<td>650</td>
<td>30,38</td>
<td>0,45</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Source: 2015, H. C. Gils
Results
Long-term scenarios

Yearly Demand (TWh)

- Scenario 1
- Scenario 2
- Scenario 3

2010 2015 2020 2025 2030 2035 2040 2045 2050
Europe’s Capacity Portfolio Comparison

- Nuclear
- Unabated Gas
- Gas CCS
- Hydro/Geo/Ocean
- Wind Offshore
- Unabated Coal
- Coal CCS
- Bio
- Wind Onshore
- Solar PV
Europe’s Capacity Portfolio Comparison

- Nuclear
- Unabated Gas
- Gas CCS
- Hydro/Geo/Ocean
- Wind Offshore
- Unabated Coal
- Coal CCS
- Bio
- Wind Onshore
- Solar PV

Hector M-L NTNU CenSES

Multi-horizon Stoch. Plan.
Europe’s Capacity Portfolio Comparison

- Nuclear
- Unabated Gas
- Gas CCS
- Hydro/Geo/Ocean
- Wind Offshore
- Unabated Coal
- Coal CCS
- Bio
- Wind Onshore
- Solar PV

Hector M-L NTNU CenSES
Multi-horizon Stoch. Plan.
European Power System Long-term development with Flexibility
A study on demand projections

Héctor Marañón-Ledesma

Norwegian University of Science and Technology, Center for Sustainable Energy Studies
Department of Industrial Economics and Technology Management, IØT

27 April 2018
Solar and storage uncertainty

Solar PV capital cost scenarios [€2010/kW]

- Solar PV high
- Solar PV low

Li-ion battery capital cost scenarios [€2010/kWh]

- Li-ion battery high
- Li-ion battery low
Solar and storage uncertainty

- 2015
- 2020
- 2025
- 2030
- 2035
- 2040
- 2045
- 2050
Solar and storage uncertainty

High costs

Low costs

[GW]

Solar PV
Wind Offshore
Wind Onshore
Hydro/Geo/Ocean
Bio
Gas CCS
Coal CCS
Unabated Gas
Unabated Coal
Nuclear
Solar and storage uncertainty

High costs

Low costs

- Solar PV
- Wind Offshore
- Wind Onshore
- Hydro/Geo/Ocean
- Bio
- Gas CCS
- Coal CCS
- Unabated Gas
- Unabated Coal
- Nuclear
Solar and storage uncertainty

Installed capacity solar PV

- Perfect foresight high cost
- Perfect foresight low cost
- Stochastic model high cost
- Stochastic model low cost

Hector M-L
NTNU CenSES
Multi-horizon Stoch. Plan.