Modeling the wind auctions as a participation game

Silvester van Koten
Jan Vavra
University of Economics, Prague
(kie.vse.cz)
Consider the following case

- To enter to an industry:
 - need to win a license in an auction
 - To enter the auction: considerable (sunk) bid preparation costs
• Renewables were supported by feed-in tariffs in many EU countries
 - big drawbacks (costly and hard to control)

• New system by auctioning the support in a reversed auction
 - Limited number of “support units”
 - Win support units by bidding the price you would like to have guaranteed for your project
Focus on German auctions for support to onshore wind (EEG 2014)

- Bid eligibility requirement
 - permits necessary for the realization of the project.
 - form of (sunk) bid preparation costs
 - can be up to 10% of total project cost!

Bid preparation costs is a well-known phenomena

- Recent case: British printing firm De La Rue
 - lost bid for printing order of new UK passports
 - profit warning, due to the large bid preparation costs.
 - £4m for contract of £490m -> 0.8%!
The model - setup

Stage 1

- The Auctioneer announces an auction with U units and CAP price.
- N potential bidders decide simultaneously whether to enter and pay δLFC.
- Mixed strategy: each potential bidder enters with probability q.

Stage 2

- n actual bidders entered (common knowledge).
- Other bidders receive outside option OO.
- Actual bidders bid in an reverse
The model - solving

Stage 1
- There are N potential bidders
- Bidder enters with probability q

$q^* : \Pr[n \leq U | q] \cdot \pi^H + \Pr[n > U | q] \pi^L = OO$

Stage 2
- n bidder entered
- If
 - $n \leq U : b_{CAP}$
 - $n > U : b_{MC + (1-\delta)LFC}$

$\pi^H = CAP - MC - LFC$

$\pi^L = -\delta \cdot LFC$
$$\alpha[q] = \sum_{n=1}^{U} \left(q^{n-1} (1 - q)^{N-n} \right) \binom{N - 1}{n - 1}$$

$$\Pr[n \leq U \mid q] \cdot \pi^H + \Pr[n > U \mid q] \pi^L = OO$$
The simulation

Simulation parameters

- \(N = 30 \) (potential bidders)
- \(U = 1, \ldots, 25 \) (units on sale, varies)
- \(MC = 5 \)
- \(CAP = 100 \)
- \(\delta = 10\% \)
- average of 50 000 draws

FIXED

- \(LFC = 40 \)

DISTRIBUTION

- \(LFC \) i.i.d. \([30, 50]\)
Fixed costs identical \(\text{CAP} = 100 \)

- Equilibrium bid + lcost
- Equilibrium bid
- Lcost (UPA without)
\[\text{CAP} = 100 \]

Fixed costs iud [30, 50]

- Equilibrium bid + lcost
- 均衡投标 (Equilibrium bid)
- Lcost (UPA without)

\[\frac{U}{N} \cdot 100 \]
$CAP = 100$

Probability q

- Red line: Fixed costs identical
- Blue line: Fixed costs iud

$x = \frac{U}{N} \cdot 100$
Units in excess rel. to units used

\[
\frac{E[\max(0, n - U)]}{E[\min(U, n)]} \cdot 100
\]
• Decreasing CAP may help?
Fixed costs identical

CAP = 100

- Equilibrium bid + lcost
- Equilibrium bid
- Lcost (UPA without)

Fixed costs identical

CAP = 60

\[\frac{U}{N} \cdot 100 \]
Decreasing CAP may help?

- Lowers cost
- Increases cost of non-build capacity due to potential shortage of entry
• Pre-investment costs only 1%
Fixed costs identical

Equilibrium bid + lcost
Equilibrium bid
Lcost (UPA without)

Probability q

$\delta = 0.01$

Fixed costs iid [30, 50]
• Conclusion

- Theory predicts that sunk pre-investment in an auction:
 • Creates a stochastic process of entry
 • Excess entry \rightarrow increases auction price, wasted sunk costs
 • Shortage of entry \rightarrow unimplemented projects
 • This results to higher bids than the same auction without pre-investment

- Lowering the CAP price
 • Reduces excess entry
 • Increases shortage of entry

- Lowering the pre-investment
 • Lowers excess entry and shortage of entry
 • Make auction closer to an ideal case (solar vs. wind)
If anybody wants to know:
- **Assumptions**
 - One-shot game
 - UPA instead of DA
 - Single-unit demand

\[\alpha[q] = \sum_{n=1}^{U} \left(q^{n-1}(1-q)^{N-n} \right) \binom{N-1}{n-1} \]

\[\alpha[q^*] \cdot u \left[\pi_P^H + W \right] + (1-\alpha[q^*]) \cdot u \left[\pi_P^L + W \right] = u[OO+W] \]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous variables</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Capacity on auction</td>
</tr>
<tr>
<td>N</td>
<td>Population of potential bidders</td>
</tr>
<tr>
<td>LFC</td>
<td>The levilized fixed cost for the full project</td>
</tr>
<tr>
<td>MC</td>
<td>Marginal cost of producing (assumed constant)</td>
</tr>
<tr>
<td>δLFC (where $0 < \delta < 1$)</td>
<td>The (administrative) cost of entry in the auction auction</td>
</tr>
<tr>
<td>CAP</td>
<td>A price cap set by the regulator</td>
</tr>
<tr>
<td>OO</td>
<td>The outside option of the potential bidders</td>
</tr>
<tr>
<td>$VOUL$</td>
<td>Value Of Uncontracted Load</td>
</tr>
<tr>
<td>RA</td>
<td>risk aversion parameter in the utility function $u[x] = x^{RA}$</td>
</tr>
<tr>
<td>Endogenous variables</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>The number of actual bidders</td>
</tr>
<tr>
<td>q</td>
<td>Probability of entering (endogeneous)</td>
</tr>
<tr>
<td>$\alpha = P[n \leq U</td>
<td>M, q]$</td>
</tr>
</tbody>
</table>