

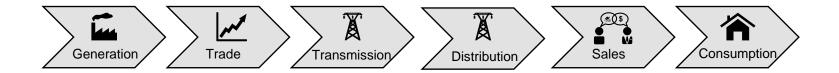
SURVEY AND CLASSIFICATION OF BUSINESS MODELS OF THE ENERGY TRANSFORMATION

Johannes Giehl FG Energie- und Ressourcenmanagement | TU Berlin Enerday | 12.04.2019

01	* *+	Motivation
02	2	Status Quo
03	Q	Research Question
04		Methodology
05	Ø	Results
06		Conclusion and Outlook

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019 Page 2 12.04.2019

Global Trends

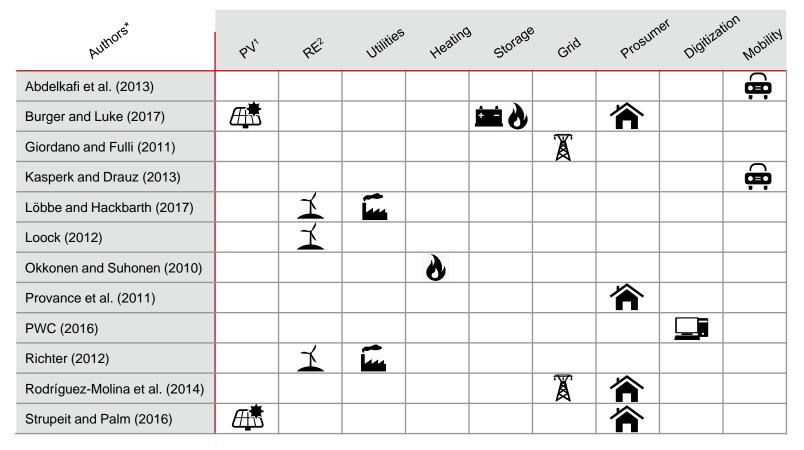

- Paris Agreement and the 2°C / 1.5°C goal
- Energy transition to decarbonize the German energy system
- Fundamental shift to renewable, CO₂¹-neutral energies within global energy supply

Classic structures of the energy industry are subject to massive changes

- Decarbonisation causes a shift to renewable energy production
- Decentralization of the energy system through the use of renewable generation technologies²
- Digitization leads to growing linkages between elements of the energy system

DECARBONISATION, DIGITIZATION AND DECENTRALIZATION REQUIRE STRUCTURAL CHANGES

- Value chain becomes value network
- · Backlog in the heat and transport sectors


Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019

Page 3 ¹ Carbon Dioxide; ² Through the use of units with a lower capacity and increasing relevance of distribution networks

O2 Status Quo – The current research is focused on single sub-sectors

- Liberalisation, decarbonisation, decentralization and digitization have significantly increased the pace of change
- To analyse the business models, different existing systemizations are used
- Only specific business models are analysed by the listed selection of authors
- The specific value creation networks are often not further analysed

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019

12.04.2019

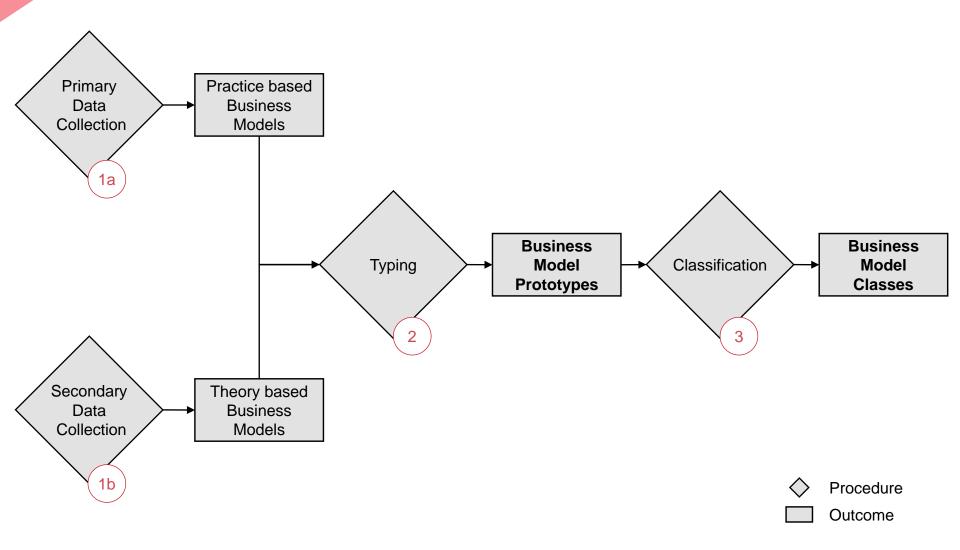
Page 4 ¹ Photovoltaic (Due to its importance for private applications, PV is listed separately.); ² Renewable Energy; * The presented literature is an exemplary selection

Q 03 Research Gaps and linked Questions

Business model frameworks

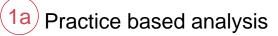
- Existing systematizations are not sufficient to characterize the business models of energy system transformation
- How does a BMF¹ look to illustrate the characteristics of the energy industry?

Energy business models

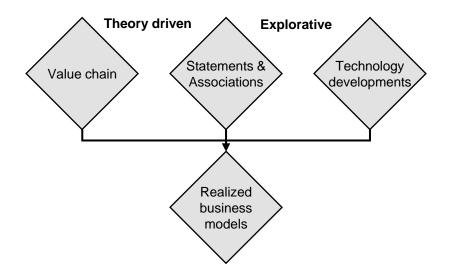

- There is no complete overview of energy business models
- What is the comprehensive picture of the current business models of the energy sector?

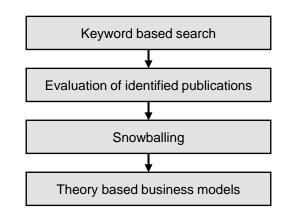
Structure of the energy industry

- There is no adequate approach to describe the effects of energy system transformation on the interactions between business models and the structure of the energy industry
- What is the structure of the current energy value chain?


Methodology – Search and analysis process

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019 Page 6 12.04.2019

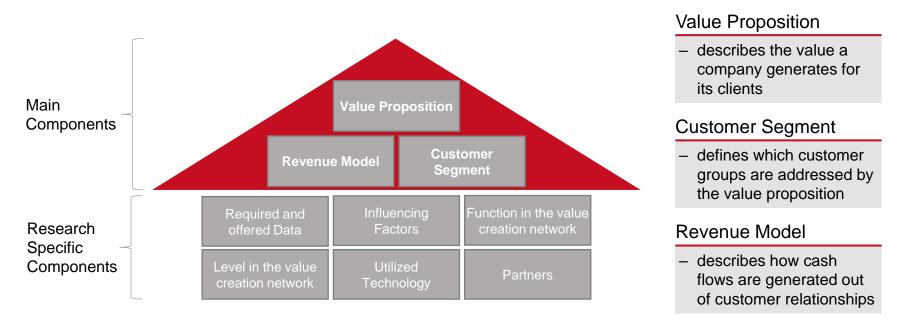

1 04 Methodology – Survey



- Primary data collection
- Case study approach based on design possibilities according to Yin (2013)
- Prerequisite: One company can combine various business models
 - E.g. Integrated municipal utilities

1b Theory based analysis

- Secondary data collection
- Literature analysis according to Kitchenham and Brereton (2013)
- Keywords: energy system transformation and business models
 - Complemented by equivalent and related terms
 - Combined into appropriate search strings



04 The business model framework for the energy industry (BMFE)

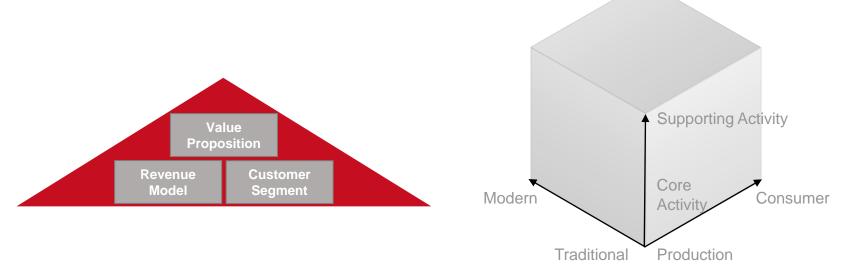
Business Model Framework for the Energy Industry

- Synthesis of literature on business model frameworks
- Illustration of relevant dimensions of the energy industry
- Structuring of generally valid and energy-related business model components

• Mean to characterize the business models found in the survey process by systematic collection of company data

Possibility to describe the structure of a concrete business model

Methodology – Typing and Classification of business models



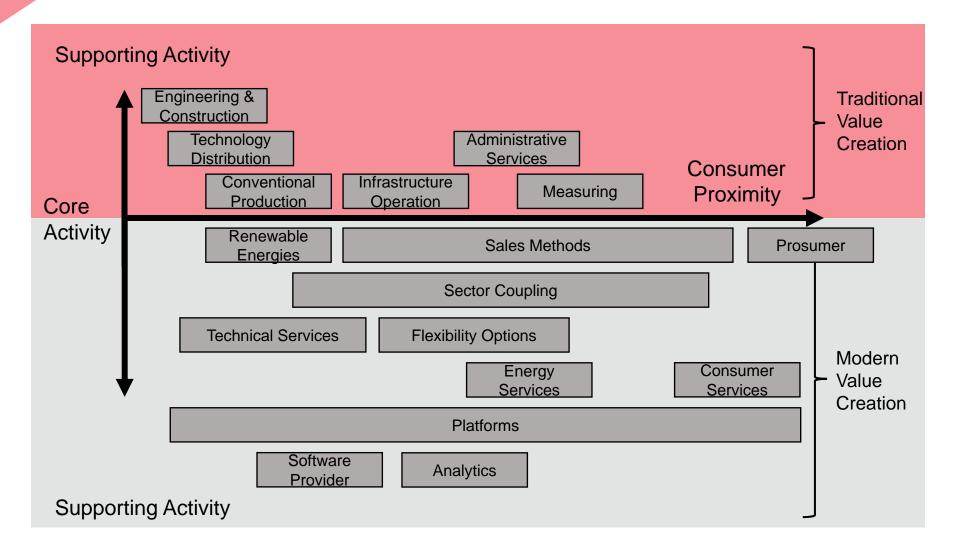
2 Typing

- Differentiation by main components (value proposition, revenue model and customer segment)
 - Identical main components within one business model prototype
- Other components used to describe the business models in detail
- Result: Business Model Prototypes

3 Classification

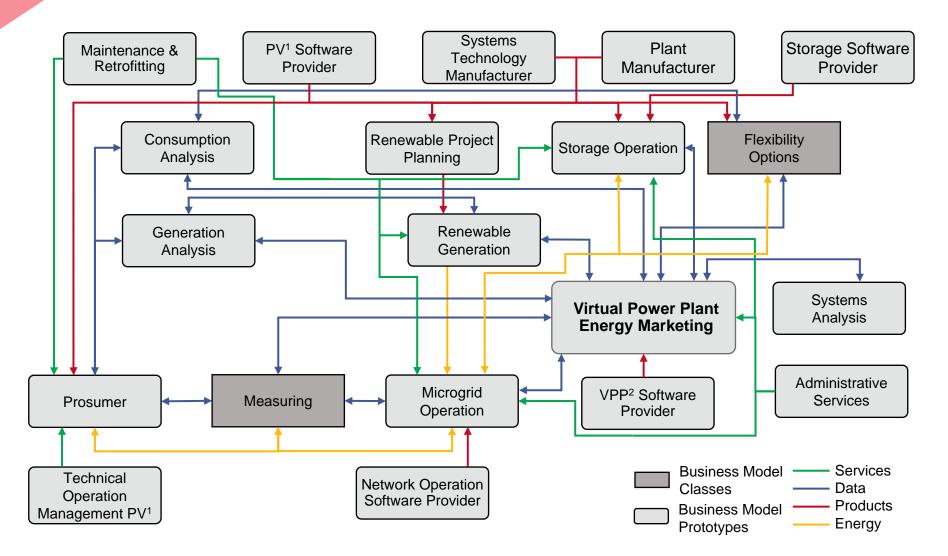
- Prototypes are grouped based on their position in the value creation
- Consideration of disruptive character of the energy system transformation
- Result: Business Model Classes

Practice based analysis


- Coverage: 134 companies
- Identification of 242 business models
- Integrated and municipal utilities cover many business models
- Start-Ups with new technologies do not describe their business models precisely
- Business Models are fragmented
 - e.g. safety technology or app-controlled consumers in the Smart Home
- New business models for the energy industry
 - Software provider
 - Plant manufacturer
 - Analytics
- Realized sector coupling concepts: powerto-mobility predominant

Theory based analysis

- Coverage: 166 publications
- Identification of 396 business models
- Dominance of traditional business models of the energy industry for
 - Generation
 - Transportation
 - Distribution and sales
- Prosumer as part of the new energy system explicitly mentioned
 - In practice this business model is not found
- Future sector coupling concepts: power-togas, power-to-heat and smart grid concepts are presented in detail (and not found on the market yet)
 - Cross-industry and cross-sectoral concepts
 - Influence of renewable energies affects the majority of business models


O5 Results – The classification results in 17 business model classes

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019 Page 11 12.04.2019

O5 Results – Example of a value creation Inetwork for a Virtual Power Plant

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019

12.04.2019

Page 12 ¹ Photovoltaic; ² Virtual Power Plant

* Opposed to the flow directions, payments are assumed between the business models

06 Conclusions and Further Research

Summary

- A total of 638 business models have been identified
- 69 business model prototypes were extracted and described by the BMFE¹
- Business model prototypes represent a summary of business models with the same value proposition, revenue model and customer segments
- Grouping into 17 business model classes according to the dimensions of customer proximity and position in the value creation
- Value creation networks emerge due to new and more complex interdependencies between business models

Further Research

- Review and complementation of business model prototypes to frequently update the status quo of the business models and business model classes of the energy industry
- Extension of the analysis instrument by a quantitative evaluation (e.g. cash flow)
 - Ongoing development, at our department, of a quantitative model-based evaluation system
- Identification of the market players and recording the regional scalability of a business model prototype
 - · Ongoing work, at our department, for regionalized assessment of energy related business models

Thank you for your attention

Department of Energy and Resource Management

Johannes Giehl giehl@er.tu-berlin.de

Sekr. FH 5-3 Raum FH 503 Fraunhoferstraße 33-36 10587 Berlin

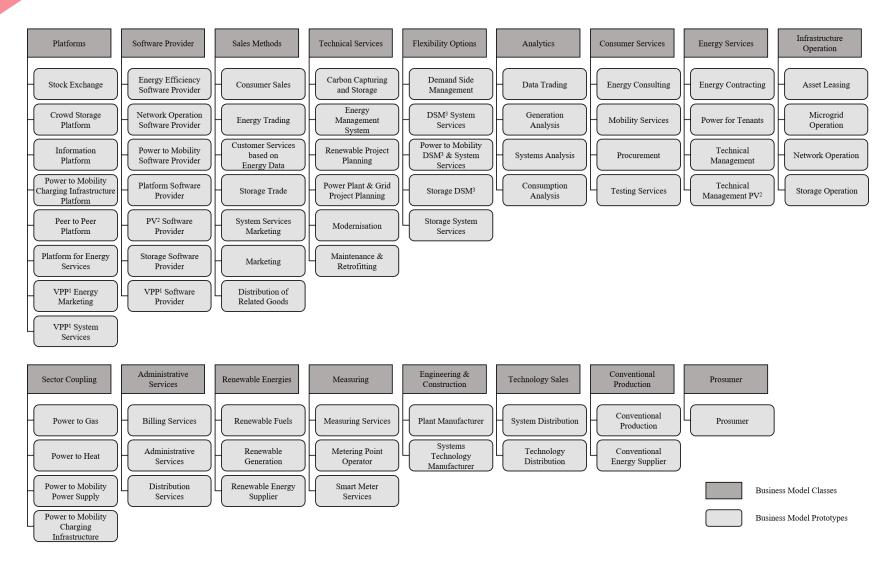
www.er.tu-berlin.de

- Abdelkafi, N., Makhotin, S. and Posselt, T. (2013): "Business Model Innovations for Electric Mobility What Can Be Learned from Existing Business Model Patterns?" International Journal of Innovation Management 17 (01): 1340003-1-1340003–41. https://doi.org/10.1142/S1363919613400033.
- Backhaus, K., Erichson, B., Plinke, W. and Weiber, R. (2016): Multivariate Analysemethoden: eine anwendungsorientierte Einführung. 14., überarbeitete and aktualisierte Auflage. Berlin Heidelberg: Springer Gabler.
- Bieger, T., zu Knyphausen-Aufseß, D. and Krys, C. (2011): Innovative Geschäftsmodelle: konzeptio-nelle Grundlagen, Gestaltungsfelder and unternehmerische Praxis. Academic network. Ber-lin Heidelberg: Springer.
- BMWi. (2017): "LEISTUNGSBESCHREIBUNG zum Dienstleistungsvorhaben, Die Energiewirtschaft im Rahmen der Energiewende: Wissenschaftliche Analysen zu wirtschaftlichen Fragen and Zu-kunftsperspektiven der Energiewirtschaft (Kurztitel EVU Strukturwandel)". https://www.evergabe-online.de/tenderdocuments.html?3&id=176478.
- BMWi. (2017b): "Stellungnahmen Konsultationen zu aktuellen Gesetzesvorhaben". 2017. http://www.erneuerbareenergien.de/EE/Navigation/DE/Service/Stellungnahmen/stellungnahmen.html.
- Burger, S. P. and Luke, M. (2017): "Business Models for Distributed Energy Resources: A Review and Empirical Analysis". Energy Policy 109 (Oktober): 230–48. https://doi.org/10.1016/j.enpol.2017.07.007.
- Demil, B., and Lecocq, X. (2010): "Business Model Evolution: In Search of Dynamic Consistency". Long Range Planning 43 (2–3): 227–46. https://doi.org/10.1016/j.lrp.2010.02.004.
- Doleski, O. D. (2014): "Entwicklung neuer Geschäftsmodelle für die Energiewirtschaft das Inte-grierte Geschäftsmodell". In Smart Market, herausgegeben von Christian Aichele and Oli-ver D. Doleski, 643–703. Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-02778-0_24.
- EY. (2016): "Geschäftsmodelle 2020 Wie in der Energiewirtschaft zukünftig noch Geld verdient werden kann".
- Flick, U. (2011): "Triangulation". In Empirische Forschung and Soziale Arbeit, herausgegeben von Gertrud Oelerich and Hans-Uwe Otto, 323–28. Wiesbaden: VS Verlag für Sozialwissenschaf-ten. https://doi.org/10.1007/978-3-531-92708-4_23.
- Gioia, D. A., Corley, K. G. and Hamilton, A. L. (2013): "Seeking Qualitative Rigor in Inductive Rese-arch: Notes on the Gioia Methodology". Organizational Research Methods 16 (1): 15–31. https://doi.org/10.1177/1094428112452151.
- Giordano, V. and Fulli, G. (2011): "A Business Case for Smart Grid Technologies: A Systemic Perspec-tive". Energy Policy, November. https://doi.org/10.1016/j.enpol.2011.09.066.
- Jahnke, P., Monjau, R. and Dziomba, H. (2017): "Geschäftsmodellansätze für Mini-/Mikro-KWK and intelligente Infrastrukturen". In Lokale Impulse für Energieinnovationen, herausgegeben von Gerhard Fuchs, 161–204. Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-14801-0_8.
- Kasperk, G. and Drauz, R. (2013): "Geschäftsmodelle entlang der elektromobilen Wertschöpfungs-kette". In Elektromobilität, herausgegeben von Achim Kampker, Dirk Vallée, and Armin Schnettler, 103–48. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31986-0_4.

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019

- Kitchenham, B., and Brereton, P. (2013): "A Systematic Review of Systematic Review Process Re-search in Software Engineering". Information and Software Technology 55 (12): 2049–75. https://doi.org/10.1016/j.infsof.2013.07.010.
- Löbbe, S. and Hackbarth, A. (2017): "Geschäftsmodelle in der Energiewirtschaft: Ein Kompendium von der Methodik bis zur Anwendung". Reutlinger Diskussionsbeiträge zu Marketing & Ma-nagement. Hochschule Reutlingen. https://doi.org/10.15496/publikation-17713.
- Loock, M. (2012): "Going beyond Best Technology and Lowest Price: On Renewable Energy Inves-tors' Preference for Service-Driven Business Models". Energy Policy 40 (Januar): 21–27. https://doi.org/10.1016/j.enpol.2010.06.059.
- Morris, M., Schindehutte, M. and Allen, J. (2005): "The Entrepreneur's Business Model: Toward a Unified Perspective". Journal of Business Research 58 (6): 726–35. https://doi.org/10.1016/j.jbusres.2003.11.001.
- Okkonen, L. and Suhonen, N. (2010): "Business Models of Heat Entrepreneurship in Finland". Ener-gy Policy 38 (7): 3443–52. https://doi.org/10.1016/j.enpol.2010.02.018.
- Osterwalder, A., and Pigneur, Y. (2013): Business Model Generation A Handbook for Visionaries, Game Changers, and Challengers. New York, NY: John Wiley & Sons. http://nbn-resolving.de/urn:nbn:de:101:1-2014122414260.
- Porter, M. E. (2004): Competitive Advantage: Creating and Sustaining Superior Performance. 1. Free Press export ed. New York, NY: Free Press.
- Provance, M., Donnelly R. G. and Carayannis, E. G. (2011): "Institutional Influences on Business Model Choice by New Ventures in the Microgenerated Energy Industry". Energy Policy 39 (9): 5630–37. https://doi.org/10.1016/j.enpol.2011.04.031.
- PWC. (2016): "Deutschlands Energieversorger werden digital".
- Richter, M. (2012): "Utilities' Business Models for Renewable Energy: A Review". Renewable and Sustainable Energy Reviews 16 (5): 2483– 93. https://doi.org/10.1016/j.rser.2012.01.072.
- Rodríguez-Molina, J., Martínez-Núez, M., Martínez J.-F. and Pérez-Aguiar, W. (2014): "Business Models in the Smart Grid: Challenges, Opportunities and Proposals for Prosumer Profitabil-ity". Energies 7 (9): 6142–71. https://doi.org/10.3390/en7096142.
- Strupeit, L., and Palm, A. (2016): "Overcoming Barriers to Renewable Energy Diffusion: Business Models for Customer-Sited Solar Photovoltaics in Japan, Germany and the United States". Journal of Cleaner Production 123 (Juni): 124–36. https://doi.org/10.1016/j.jclepro.2015.06.120.
- Teece, D. J. (2010): "Business Models, Business Strategy and Innovation". Long Range Planning 43 (2–3): 172–94. https://doi.org/10.1016/j.lrp.2009.07.003.
- Varone, A., and Ferrari, M. (2015): "Power to Liquid and Power to Gas: An Option for the German Energiewende". Renewable and Sustainable Energy Reviews 45 (Mai): 207–18. https://doi.org/10.1016/j.rser.2015.01.049.
- Yin, R. K. (2013): Case Study Research: Design and Methods. https://nls.ldls.org.uk/welcome.html?ark:/81055/vdc_100025422049.0x000001.

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019


12.04.2019

Appendix – The 17 BM classes and 69 BM prototypes

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019 Page 18 ¹ Virtual Power Plant; ² Photovoltaic; ³ Demand Side Management 12.04.2019

E8R

Appendix – BMC¹-based networks show macroeconomic relations

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019

Page 19 ¹ Business Model Class; ² Households; ³ Trade & Services *Opposed to the flow directions, payments are assumed between the business models within the classes

Appendix - Examples of the variants of the BMFE components (1/2)

Value Proposition	Customer Segment	Revenue Model	Required and Offered Data	Influencing Factors
Data Collection	Households	Asset Sale	Generation Data	Subsidies
Renewable Power	Utilities	Asset Leasing	Industrial Production Data	Regulation
Power	Industry	Asset Rent	Capacity Data	Market Risks
Renewable Heat	Businesses	Connection Fees	Metering Data	Market Development
Heat	Agriculture and Farming	Feed In Tariff	Mobility Data	Competitive Technologies
Renewable Gas	Mobility Service Provider	Licence Fees	Network Data	Data Protection and Privacy
Gas	Public Companies	Pay per Use	Usage Data	Technological Development
Flexibility	Grid Operator	Service Fees	Price Information	CO ₂ ¹ -Price
Billing	Prosumer	Network Charge	Storage Data	Infrastructure Development
Data Collection	Smart Home Provider	Energy Price	Location Data	Development of E-Mobility ²
Data Processing	Storage Operator	Trading Gains	Weather Data	Development of Energy Prices
Risk Reduction	Towns and Municipalities	Basic Fee	Consumption Data	
Plant Maintenance	Car Owner	Shared Savings	Transaction Data	
Power Plant Planning	Energy Trader	Software Rent	Plant Data	
Contribution to Climate Protection	Power for Tenants Provider	Kilometre price	Availability Data	

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019 Page 20 ¹ Carbon Dioxide; ² Electro mobility 12.04.2019

Appendix - Examples of the variants of the BMFE components (2/2)

Function in the value creation network	Level in the value creation network	Utilized Technology	Partners
Data Platform	Generation	Battery Technology	Billing Service Provider
Enabler	Trade	CHP ¹	Plant Operator
Energy Provider	Information Provider	Biogas Plant	Plant Sales
Producer	Capacity Management	Fuel Cell Technology	Car Manufacturer
Information Platform	Load Management	E-Mobility Technology	Construction Industry
Information Provider / Processor	Measuring	Renewable Generation Technology	Authorities
Market Maker	Mobility	Gas Storage	Biomass Providers
Market Coupler	Platform	Heating Technology	Stock Market
Market Platform	Service	Artificial Intelligence	Data Platform
Orchestrator	Storage	Measuring / Control Technology	Energy Consulting
Platform	Technology Provider	Network Infrastructure	Utilities
Prosumer	Consumption	Photovoltaics	Charging Infrastructure Operator
Layer Specialist	Distribution	Charging Infrastructure	Agriculture and Farming
Service Platform	Sales	Heat Pump	Measuring Point Operator
Technology Provider	Housing	Smart Meter	The Public/NGOs ²

Survey and Classification of business models | J.Giehl, H.Göcke, B.Grosse, J.Kochems, J.Müller-Kirchenbauer | Enerday 2019Page 21¹ Combined Heat and Power; ² Non governmental organization12.04.2019

