Decarbonization of the European energy system with strong sector couplings

	Applied Energy 236 (2019) 622-634						
ELSEVIER	Contents lists available at ScienceDirec Applied Energy journal homepage: www.elsevier.com/locate	AppliedEnergy					
electricity and K. Zhu ^{a,*} , M. Victor ^a Department of Engineering, Aarh	prices on the design of a highly decarbo heating system in Europe ia ^a , T. Brown ^b , G.B. Andresen ^a , M. Greiner ^a us University, 8000 Aarhus C, Denmark bied Informatics (AD), Karshube Institute of Technology (KIT), Forschungszentrum 449,	Check for updates					
Synergies of sector coupling and transmission reinforcement in a cost- optimised, highly renewable European energy system T. Brown ^{a, b, *} , D. Schlachtberger ^b , A. Kies ^b , S. Schramm ^b , M. Greiner ^c							
Approach Zero i Energy System	ions as Carbon Dioxide Emissions n a Highly-Renewable European fer ²³ and Martin Greiner ³		AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING				

simplified cross-sector network model

capture / extract general system dynamics + meaningful insights + inspirational results

"Smart energy" flow diagram of one country

"Smart energy" flow diagram of one country

"Smart energy" flow diagram of one country

Joint capacity + dispatch optimization

Technology	Overnight Cost[€]	Unit	$ m FOM^{a}$ $ m [\%/a]$	Lifetime [a]	CF ^b / Efficiency	LCOE ^b [€/MWh]
Onshore wind ^c	910	kW _{el}	3.3	30	0.23[0.07-0.33]	52[35-224]
Offshore wind ^c	2506	kW _{el}	3	25	0.31[0.09-0.51]	91[66-182]
Solar PV ^c	575	kWel	2.5	25	0.13[0.06-0.19]	55[39-114]
$OCGT^d$	560	kWel	3.3	25	0.39	63
CHP ^d	600	kW _{th}	3.0	25	0.47	54
Gas boiler ^{d,e}	63/175	kW _{th}	1.5	20	0.9	25/26
Resistive heater	100	kW_{th}	2	20	0.9	_
Heat pump ^e	1400/933	kW_{th}	3.5	20	[3.03-3.79]/[2.73-3.04]	121
Battery storage ^f	144.6	kWh	0	15	1.0	-
Hydrogen storage ^f	8.4	kWh	0	20	1	
Hot water tank ^{e,f}	860/30	m^3	1	20/40	$\tau = 3/180 \text{ days}$	-
HVDC lines	400	MWkm	2	40	1	-

ΑU

Joint capacity + dispatch optimization

Subject to constraints:

$$\begin{split} \sum_{s} g_{n,s,t} + \sum_{\ell} \alpha_{n,\ell,t} \cdot f_{\ell,t} &= d_{n,t} \quad \leftrightarrow \quad \lambda_{n,t} \quad \forall n,t \quad \text{Supply hourly inelastic demand} \\ \underline{f}_{\ell,t} \cdot F_{\ell} &\leq f_{\ell,t} \leq \bar{f}_{\ell,t} \cdot F_{\ell} \quad & \forall \ell,t \quad \text{Maximum power flowing through the links} \end{split}$$

Renewable generation proportional to demand in every country

Wind solar mix optimized for every country

$$g_{i,VRES}^{gross} = \gamma_i^{gross} \sum_{t,n \in i} d_{n,t}$$

$$g_{i,W}^{gross} = \alpha_i^{gross} g_{i,VRES}^{gross}$$

Joint capacity + dispatch optimization

Economic optimization:

We fix the renewable penetration and the level of O_2 tax ...

...and let the math decide the cost-optimal composition of energy generation, conversion, transmission and storage technologies.

Then, we calculate CO_2 emissions.

Results

ΑU

0.2

0.1

0.3

0.4

0.5 γ^{gross} 0.6

0.7

0.8

0.9

1.0

1000

0

0.0

More results: electricity + heating + transportation

More results: electricity + heating + transportation

More results: electricity + heating + transportation

Summary

Is Installing Large Renewable Capacities Enough to Decarbonize the Coupled Electricity-and-Heating System in Europe?

No! ... OO_2 tax is required to

- incentivize an efficient + highly decarbonized electricity-heating system
- avoid renewable curtailment, combustion of fossil fuel, and inefficient technologies
- incentivize efficient technologies such as heat pumps

"Energiewende": kickoff to the second half

Figure 1. RE-Invest will combine the Smart Energy Systems cross-sectoral approach (right side) at Aalborg University with the crossborder approach (left side) and tools developed by Aarhus University at the European scale. This will lead to a **novel twodimensional interconnectivity approach** for the design of robust and cost-effective investment strategies towards a sustainable energy system.

Next steps

- include: biomass, heat savings, industry sector, ...
- transition pathways 2020 à 2050
- impact of climate change
- large à small scale modelling
- quantitative tech+econ+soc+pol consulting

idimate (AU BNV + ENG)

ΑU

D Heide et.al.: Seasonable optimal mix of wind and solar power in a future, highly renewable Europe, Renewable Energy 35 (2010) 2483-89. D Heide et.al.: Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation, Renewable Energy 36 (2011) 2515-23.

MG Rasmussen et.al.: Storage and balancing synergies in a fully or highly renewable pan-European power system, Energy Policy 51 (2012) 642-51. RA Rodriguez et.al.: Transmission needs across a fully renewable European power system, Renewable Energy 63 (2014) 467-76. SBecker et.al.: Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply, Energy 64 (2014) 404-18. TV Jensen et.al.: Emergence of a phase transition for the required amount of storage in highly renewable electricity systems, EPJST 223 (2014) 2475-81. SBecker et.al.: Features of a fully renewable USelectricity system – optimized mixes of wind and solar PV and transmission grid extensions, Energy 72 (2014) 443-58.

GB Andresen et.al.: The potential for arbitrage of wind and solar surplus power in Denmark, Energy 76 (2014) 49-58. SBecker et.al.: Renwable build-up pathways for the US Generation costs are not system costs, Energy 81 (2015) 437-45. RA Rodriguez et.al.: Cost-optimal design of a simplified, highly renewable pan-European electricity system, Energy 83 (2015) 658-68. RA Rodriguez et.al.: Localized vs. synchronized exports across a highly renewable pan-European transmission network, Energy, Sustainability & Society 5 (2015) 21.

GB Andresen et.al.: Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis, Energy 93 (2015) 1074-88.

B Tranberg et.al.: Power flow tracing in a simplified highly renewable European electricity network, New J. Physics 17 (2015) 105002. D Schlachtberger et.al.: Backup flexibility classes in renewable electricity systems, Energy Conversion and Management 125 (2016) 336-46. EEriksen et.al.: Optimal heterogeneity of a simplified highly renewable pan-European electricity system, Energy 133 (2017) 913-28. D Schlachtberger et.al.: The benefits of cooperation in a highy renewable European electricity network, Energy 134 (2017) 469-81. M Schäfer et.al.: Decompositions of injection patterns for nodal flow allocation in renewable electricity networks, Eur. Phys. J B 90 (2017) 144. M Schäfer et.al.: Scaling of transmission capacities in coarse-grained renewable electricity networks, Europhysics Letters 119 (2017) 38004. M Raunbak et.al.: Principal mismatch patterns across a simplified highly renewable European electricity network, Energies 10 (2017)1934. J Hörsch et.al.: Row tracing as a tool set for the analysis of networked large-scale renewable electricity systems, Int. J. Electrical Power and Energy Systems 96 (2018) 390-97.

H Liu et.al.: Cost-optimal design of a simplified highly renewable Chinese electricity network, Energy 147 (2018) 534-46. B Tranberg et.al.: How-based nodal cost allocation in a heterogeneous highly renewable European electricity system, Energy 150 (2018) 122-33. T Brown et.al.: Synergies of sector coupling and transmission extension in a cost-optimised highly renewable European energy system, Energy 160 (2018) 720-39.

D Schlachtberger et.al.: Cost optimal scenarios of a future highly renewable European electricity system – exploring the influence of weather data, cost parameters and policy constraints, Energy 163 (2018) 100-14.

F Hofmann et.al.: Principal flow patterns across renewable electricity networks, Europhysics Letters 124 (2018) 18005.

M Schlott et.al.: The impact of climate change on a cost-optimal highly renewable European electricity network, Applied Energy 230 (2018) 1645-59. KZhu et.al.: Impact of OO₂ prices on the design of a highly decarbonized coupled electricity and heating system in Europe, Applied Energy 236 (2019) 622-34.

T Brown et.al.: Sectoral interactions as carbon dioxide emissions approach zero in a highly-renewable European energy system, Energies 12 (2019) 1032.

H Liu et.al.: The role of hydro power, storage and transmission in the decarbonization of the Chinese power system, Applied Energy 239 (2019) 1308-21.

Results

Results

Transmission volume ^b	Optimal volume			Todays volume		
Emission level	20%	10%	5%	20%	10%	5%
CO ₂ price	160	260	380	200	320	580
Gross penetration	0.46	0.57	0.64	0.5	0.64	0.7
Gross wind/solar	0.77	0.8	0.8	0.73	0.74	0.79
System cost incl. CO ₂ tax	348	378	397	380	417	456
System cost excl. CO ₂ tax	277	320	355	291	346	391
LCOE incl. CO_2 tax	54.3	58.9	61.9	59.2	64.9	71.1
LCOE excl. CO_2 tax	43.2	49.8	55.4	45.4	53.9	60.9
Onshore wind	1,090	1,406	1,567	1,126	1,428	1,591
Offshore wind	0	10	21	5	33	88
Solar PV	542	616	719	703	902	812
Resistive heater	307	389	464	434	581	673
Heat pump	69	113	148	67	103	143
Gas boiler	567	469	332	512	399	300
OCGT	0	0	0	17	1	0
CHP	363	243	165	464	336	268
Battery storage	9	10	0	145	180	143
Hydrogen storage	0	0	0	0	0	0
Hot water tank	7,768	27,823	91,796	17,232	57,818	156,753
Transmission volume	141	176	196	32	32	32

ΑU