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simplified cross-sector network model

capture / extract general system dynamics + meaningful insights + inspirational results
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Joint capacity + dispatch optimization:

variable costs

generation costs storage costs transmission costs (including CO, tax)
min E Cns Gns + E s E ce - Fyp+ E On.s,t " 9n,s,t
Gn:ssEn:s~ / n.s.t
Ff-.gn,_a_!_ n,s n.,s ¢ 19
lectrici @ clectricity === existing 1’_{‘
-' B Ir:lt{ ® ruralheat ——  under construction
rural hea S

urban heat g
urban heat 3

Pan Feb Mar Ar May Jun Jul Ag Sep Oct Nov Dec
2015

2015: 2854 TWh,, 3562 TWh,,




“Smart energy” flow diagram of one country
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Joint capacity + dispatch optimization

Technology Overnight Unit FOM®* Lifetime CF®/ LCOEP
Cost[€] [Yo/a) [a] Efficiency [€/MWHh]
Onshore wind® 010 kW 3.3 30 0.23[0.07-0.33] 52[35-224]
Offshore wind*® 2506 kW, 3 25 0.31[0.09-0.51] 01[66-182]
Solar PV© 575 kWgq 2.5 25 0.13[0.06-0.19] 55[39-114]
OCGT¢ 560 kW 33 25 0.39 63
CIHP 4 600 kW, 3.0 25 0.47 54
Gas boiler®* 63/175 kWi 1.5 20 0.9 25/26
Resistive heater 100 kW.n 2 20 0.9 <
Heat pump® 1400/933 kWi 35 20 [3.03-3.79]/[2.73-3.04] -
Battery storage’ 144.6 kWh 0 15 1.0 -
Hydrogen storage 8.4 kWh 0 20 1 -
Hot water tank®* 860/30 m? 1 20/40 T = 3/180 days -
HVDC lines 400 MWkm 2 40 1 -
AARHUS

A U  uNveErsTY

DEPARTMENT OF ENGINEERING



Joint capacity + dispatch optimization

Economic optimization:

variable costs
generation costs storage costs (including GO, tax)
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Joint capacity + dispatch optimization

Economic optimization:

variable costs
generation costs storage costs (including GO, tax)
_ min E Cn.s Gns+ E Cns Ens T E ce - Fyp+ E On st " 9n,s,t
Gn.siBina n.s / n,s,t

= i —_p
-r‘f-.gn_e.f

We fix the renewable penetration and the level of OO, tax ...

...and let the math decide the cost-optimal composition of energy
generation, conversion, transmission and storage technologies.

Then, we calculate GO, emissions.
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Results
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Results
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More results: electricity + heating + transportation

Costs with Optimal Transmission Costs with No Transmission
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More results: electricity + heating + transportation

Costs with Optimal Transmission
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More results: electricity + heating + transportation
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SImmary

Is Installing Large Renewable Capacities Enough to Decarbonize
the GCoupled Hectricity-and-Heating System in Europe?

No! ... OO, taxisrequired to

« incentivize an efficient + highly decarbonized
electricity-heating system

« avoid renewable curtailment, combustion of fossil fuel,
and inefficient technologies

« incentivize efficient technologies such as heat pumps
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,Energiewende”: kickoff to the second half

2015

Danmarks Innovationsfond Grand Solutions
(04.2017-03.2022, 2.3 M€) .
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Figure 1. RE-Invest will combine the Smart Energy Systems cross-sectoral approach (right side) at Aalborg University with the cross-

border approach (left side) and tools developed by Aarhus University at the Furopean scale. This will lead to a novel two-

dimensional interconnectivity approach for the design of robust and cost-effective investment strategies towards a sustainable

energy system.
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Next steps B INVEST

* include: biomass, heat savings, industry sector, ...
e transition pathways 2020 a 2050
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Results
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Results

Transmission volume®”

Optimal volume

Todays volume

Emission level 20%  10% 5% | 20% 10% 5%
CO; price 160 260 380 200 320 580
Gross penetration 0.46 0.57 0.64 0.5 0.64 0.7
Gross wind /solar Q.77 0.8 0.8 0.73 0.74 0.79
System cost incl. COs tax 348 378 307 380 417 456
System cost excl. CO; tax | 277 320 355 201 346 301
LCOE incl. CO, tax 54.3 58.0 1.9 50.2 64.9 i1
LCOE excl. CO» tax 43.2 40.8 bb.d 4b.4 3.0 60.9
Onshore wind 1,000 1,406 1,567 1,126 1,428 1,591
Offshore wind 0 10 21 5 33 HE
Solar PV h42 616 719 703 qo2 812
Resistive heater 307 380 464 434 581 G73
Heat pump G0 113 148 67 103 143
(Gas boiler beT 469 232 512 399 300
OCGT 0 0 0 17 1 0
CHFP 363 243 165 464 336 268
Battery storage 9 10 l; 145 180 143
Hydrogen storage 0 0 0 0 0 0
Hot water tank 7,768 27823 01,796 | 17232 57818 156,753
Transmission volume 141 176 196 32 32 32
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