

LNG from renewable sources as an alternative fuel for maritime shipping?

Enerday 2019 Dresden, 12.04.2019

Prof. Dr. Andreas Seeliger

SWK E2 Institut für Energietechnik und Energiemanagement der Hochschule Niederrhein - Krefeld

- 1 Introduction : Emissions, Ships, Fuels, Regulation
- 2 LNG for Maritime Shipping: Technical Issues, Environmental Impact, Survey
- 3 Outlook: Green Gas, Infrastructure
- 4 Conclusions

Note: Work in Progress (Breuer/Seeliger (2019))

- Transport is one of the main source for various emissions (e.g. 18% of global CO₂ emissions)
- Within transport sector, few maritime ships (less than 100.000 worldwide) are responsible for high emissions

	2011	2018	
Tanker	10,609	10,420	
Bulk Carrier	8,228	11,125	
General Cargo	21,090	19,613	
Container	4,966	5,164	
Others	38,390	47,847	
Total	83,283	94,169	
	"Others" include cruise ships		

Source: UNCTADSTAT (2018)

Environmental Regulations

- International waters: regulation by IMO
- Sulfur content fuel oil: max. 3,5% (2020: 0,5%)
- NOx: limited in relation to engine power (max. 14 g/kWh)
- Emission Control Areas (ECA) : higher environmental standards (e.g. 0,1% sulfur, 3 g/kWh NO_x)
- No CO₂-regulation so far by IMO (but roadmap for 2050 published with -50% target)
- National regulations within 12 mile zone (e.g. sulfur EU outside ECA: 1,5%; China 0,5%)
- Additional penalties or incentives in various harbours

Source: ICIS (2018)

Technical Background LNG

- Established engine technology (single or dual fuel)
- Cryo tank needed => compared to MDO tank: more expansive, more space requirement, fuel boil off 0,15%/d
- High safety standards for fuelling process
- Fuelling:
 - Shore-to-Ship: harbour needs regasification terminal or large scale cryo tank (e.g. AIDAnova 3.500 m³; new CMA GGN 18.000 m³)
 - Truck-to-Ship: capacity of truck approx. 22 m³
 - Ship-to-Ship: bunker ship with capacity of approx. 7.500 m³
 (2020: new bunker ship generation with up to 19.000 m³)

Environmental Impact of LNG

Source: own estimations based on various sources

2 Industry's View

- Survey in Q4/2018
- Questionaire sent to 62 stakeholders (shipping companies, energy supplier, harbour operators, dockyards, associations etc.)
- 13 returns plus 7 personal interviews
- Some results:
 - Nearly all see natural gas as an important source in general as well as for transport (general) and shipping
 - Prefered fuel (multiple mentions): 9 LNG, 5 Marine Diesel, 1 Electric, 0 Hydrogen
 - Methan leakage no issue in practice (contrary to literature)
 - Main problem for LNG expansion: unsuitable legal framework and local harbour requirements

³ Next Step: LNG from renewable sources ("Green Gas")

SWK

Hochschule Niederrhein

SWK E²

Source: Frontier Economics/IAEW (2019), p. 21

- LNG with significant environmental improvements
 => even with "grey methane"
- Technical feasible (already now)
- No additional infrastucture needed on national level
 => but: local investments necessary
- Even further environmental improvements possible with various "green gas" sources
- Critical issues:
 - Cost impacts (investment harbours, new ships, additional fuel costs)
 - Regulatory framework (incl. regulation and taxation of fuels, "(inter-) national gas strategy")

References

- Breuer, T./Seeliger, A. (2019): Umwelteffekte eines Einsatzes von LNG in der internationalen Seeschifffahrt (working title), forthcoming
- Frontier Economics/IAEW (2019): The Value of Gas Infrastructure in a Climate Neutral Europe. Cologne/Aachen
- IMO: http://www.imo.org
- ICIS (2018): Refiners, shippers face uncharted waters of low-sulphur 2020 rule.

https://www.icis.com/explore/resources/news/2018/09/11/10258700/ins ight-refiners-shippers-face-uncharted-waters-of-low-sulphur-2020-rule/

- Klimont, Z. (2017): Global anthropogenic emissions of particulate matter including black carbon. https://doi.org/10.5194/acp-17-8681-2017
- Lloyd's/UCL (2014): Global Marine Fuel Trends 2030. London
- Olmer, N. et.al. (2017). Greenhouse Gas Emissions from Global Shipping. https://www.theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf
- UNCTADSTAT (2018): Merchant Fleet by flag of registration. http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx

Contact

