Dipl.-Ing. Michael Wiesmeth PD Dr.-Ing. Markus Blesl GEFÖRDERT VOM #### **AGENDA** - I. Introduction "Kohlekommission" - II. Model and Scenario characterization - III. Quick coal phase-out and its repercussions - IV. Accompanying measures - V. Summary # Basis for comparison: Initial scenario (reference) | Global Level | In rest of the world (outside the EU), climate protection takes place according to the
Nationally determined contributions (NDCs), which are to be met. | | | | | | | | |--------------|--|--|--|--|--|--|--|--| | Europe | Emission reduction targets according to the EU Emissions trading Scheme (ETS) Forerunner Alliance: Introduction of a national minimum CO2 price Member states: | | | | | | | | | | - Belgium - Denmark - France Year 2020 2025 2030 2035 2040 2045 205 | | | | | | | | | | Luxembourg Netherlands [€₂₀₁₅ / t CO₂-Equi.] 30 45 60 75 90 105 12 | | | | | | | | | | – Sweden | | | | | | | | | Germany | Klimaschutzplan 2050 (Climate protection plan) with emission reduction targets compared to 1990 ("sector targets") For the transformation sector (public electricity and heat generation, refineries, other transformation), the achievement of the sector target is not a binding requirement. | | | | | | | | | Year
Sector | 2030 | 2050 | |----------------|------------------|--------------| | Buildings | -65% | -94% | | Transport | - 40% | - 90% | | Industry | - 49% | -81% | | Agriculture | -34% | -89% | IER Universität Stuttgart #### **TIMES PanEU** #### model characterization - Energy system model - Technology-oriented, bottom-up optimization model - Perfect foresight - Objective: Minimization of total costs (optimization model) - Modelling period 2010 2050 - 12 time segments (four seasonal and three daily time segments) - 31 Regions model (EU 28, Norway, Switzerland, Baden-Württemberg) - Interregional exchange processes (electricity, biofuels) - Country-specific segmentation of the power generation sector, households, commerce, industry and transport - Emissions: Greenhouse gases (CO2, CH4, N2O) - Sector-based: public and industrial energy supply, industry, households, GHD, transport, agriculture and refineries ### The Scenarios | I. Baseline and Reference | Germany | | European Union | | Scenario Identifier | |--|---|--|--|--|---| | baseline | Energy
ETS | Other sectors
ETS | forerunners
ETS | others
ETS | ETS | | Ref erence case for Comparison | ETS | KSP90 | COP | ETS | REF | | II. Intermediate Steps | Germ | any | European Union | | Scenario Identifier | | | Energy | Other sectors | forerunners | others | | | Q uick Ex it from c oal | CEX-Q | KSP90 | COP | ETS | CEX-Q | | CO2 pricing scenario | COP | KSP90 | COP | ETS | COP | | | | | | | | | | Germany | | European Union | | | | III. Policy Packages | Germ | any | European | Union | Scenario Identifier | | III. Policy Packages | Germ
Energy | Other sectors | • | others | Scenario Identifier | | III. Policy Packages With accompanying measures | Energy | · • | • | | CEX-Q+ | | | Energy
CEX-Q +RES +CR | Other sectors | forerunners | others | | | With accompanying measures | Energy
CEX-Q +RES +CR | Other sectors
KSP90 | forerunners
COP
COP | others
ETS
ETS | CEX-Q+ | | With accompanying measures | Energy
CEX-Q +RES +CR
COP +RES +CR | Other sectors
KSP90
KSP90 | forerunners COP COP Detailed descrip | others ETS ETS | CEX-Q+
COP+ | | With accompanying measures | Energy CEX-Q +RES +CR COP +RES +CR | Other sectors KSP90 KSP90 Sectoral sub-objective | forerunners COP COP Detailed descripe according to Climate | others ETS ETS tion Protection Plan 2 | CEX-Q+ COP+ 050 while retaining the ETS | | With accompanying measures | Energy
CEX-Q +RES +CR
COP +RES +CR | Other sectors KSP90 KSP90 Sectoral sub-objective Quick Exit fro | forerunners COP COP Detailed descrip | others ETS ETS tion Protection Plan 2 the AGORA Study | CEX-Q+ COP+ 050 while retaining the ETS quick exit pathway | | With accompanying measures | Energy CEX-Q +RES +CR COP +RES +CR KSP90 CEX-Q | Other sectors KSP90 KSP90 Sectoral sub-objective Quick Exit fro CO2 Additional pi | forerunners COP COP Detailed descripe according to Climate om coal — according to Climate om community of the | others ETS ETS tion Protection Plan 2 the AGORA Study ding the forerung | CEX-Q+ COP+ 050 while retaining the ETS y quick exit pathway the retaining the ETS of the retaining the ETS of the retailiance | # CEX-Q - Decommissioning of coal power plant capacities ### Comparison of pathways Hypothesis 1: The phasing out of coal is a suitable means of meeting German climate protection commitments ### Trends in greenhouse gas emissions ### Conversion sector - Scenario intercomparison - ETS and REF scenarios not suitable to achieve climate protection goals - REF scenario with highest emissions, as KSP90 is achieved in the end use sectors through electrification and district heating - CEX-Q and COP achieve comparable total reduction quantities in the transformation sector - After 2040, however, no more leverage from coal withdrawal (all power plants shut down) - residual emissions from natural gas power plants and refineries 12.04.2019 8 ### Bottleneck capacities - scenario coal phase out #### Year 2035 // Scenario CEX-Q - Natural gas provides the guaranteed capacity in the long term - 2035, the bottleneck capacity and the peak load in the CEX-Q scenario are around 90 GW - Installed capacity is about320 GW - Dominated by the high capacities of wind power and photovoltaics #### Side effects: Waterbed effect #### Redistribution of Emissions within the EU-ETS - In today's EU ETS, national climate targets in Germany lead to redistribution within the EU waterbed effect - > Beneficiaries outside the forerunner alliance - Quick phase-out of coal has no net effect - However: Possible solution through certificate revocation ### Side effects: Rebound effects in power generation #### Coal and natural gas - Utilisation of the existing hard coal-fired power plants is rising noticeably. - Use of natural gas power plants is also growing. - National climate protection targets for the energy industry are nevertheless being achieved. - However, the expected effect per decommissioned capacity is reduced by the rebound (coal). Hypothesis 2: # Accompanying measures reduce unwanted side effects of the rapid coal exit # Accompanying measures: RES and Certificate Revocation (CR) RES Accelerated build up of renewables capacity ### Trends in greenhouse gas emissions #### Conversion sector – with accompanying measures - Additional generation from renewables (RES) and higher certificate prices (CR) have a significant impact on emissions in the transformation sector - Coal phase out thus becomes a more effective measure - Still no solution for the years 2045 and 2050 12.04.2019 14 ### District heat from cogeneration #### Two futures for natural gas - Withdrawal from coal (CEX-Q) leads to pronounced use of natural gas for cogeneration - Reduction of the use of natural gas with RES and CR (CEX-Q+) - CO2 minimum price leads to natural gas cogeneration becoming uneconomical ### Repercussions for natural gas demand ### Two futures for natural gas - Two scenarios for the natural gas market: - Stable sales or interim high from 2025 to 2040 (CEX-Q/CEX-Q+) - Gradual decline (COP/COP+) - In the long-term perspective, climate policy is also becoming a problem for the natural gas industry! ### **Electricity trade** #### with neighbouring countries - National unilateral moves without embedding in European systems shift production to neighbouring countries - Massive import dependencies resulting in CEX-Q and COP - Increasing the ETS price through CR with simultaneous expansion of RES production can provide a more balanced import 12.04.2019 17 ### Electricity generation by energy source #### A word about cost | Scenario | CEX-Q | COP | CEX-Q+ | COP+ | |---|------------|-------------|------------|-------------| | additional costs
compared to REF | 165 Bn. € | 351 Bn. € | 272 Bn. € | 393 Bn. € | | + back up perparedness
(Sicherheitsbereitschaft) | 17 Bn. € | | 17 Bn. € | | | subtotal | 182 Bn. € | 351 Bn. € | 289 Bn. € | 393 Bn. € | | - revenue from CO2-Price | | – 128 Bn. € | | – 110 Bn. € | | SUM | 182 Bn. € | 223 Bn. € | 289 Bn. € | 283 Bn. € | | per annum (30 a) | 6 100 M. € | 7 430 M. € | 9 630 M. € | 9 430 M. € | | per household & month (Ø) | 12,90 € | 15,80 € | 20,40 € | 20,00€ | Not included are the lost revenues due to the certificate revocation externalities e.g. environmental or climate damage not taken into account #### Summary -) Coal phase-out can be an effective short-term measure on the road to climate protection (CEX-Q): - > Will result in reduction of German conversion sector emissions - However negative side effects like: rebound effects, reduction of CO2 price (waterbed effect) and increased electricity import - Replacement of coal in power generation and district heating by natural gas, albeit this has no long-term viability after 2040 - Accompanying measures (certificate decommissioning, expansion of renewables) can significantly mitigate undesirable effects: - > Reduction of rebound effects in electricity generation, balanced electricity trade - > Elimination of the transfer of emission quantities to other European countries (waterbed effect) -) Introduction of a minimum CO2 price as an alternative or additional instrument - **Possibly** accompanied by **lower** government **expenditure** (compensation payments, renewable energy promotion) - > Tendency to import dependency, but no rebound effects and regulated phase out of natural gas usage ### Vielen Dank! Dipl.-Ing. Michael Wiesmeth E-Mail Michael.Wiesmeth@ier.uni-stuttgart.de Telefon +49 (0) 711 685- 87875 Fax +49 (0) 711 685- 87873 Universität Stuttgart # Backup #### TIMES PanEU Reference Energy System # **CEX-Q** – Decommissioning of coal capacities # Comparison of pathways # Trends in greenhouse gas emissions ## Conversion sector – Scenario intercomparison # Impacts on the evolution of district heating