

Faculty of Business and Economics, Chair of Energy Economics, Prof. Dr. Möst

Interaction of sector coupling technologies with further flexibility options in energy systems with different PV-Wind shares

Christoph Zöphel

ENERDAY, 12th of April 2019

EE²

1. Motivation

- 2. Development of high RES scenarios with different wind-PV share in central western Europe
- 3. Model approach including different flexibility options and sector coupling technologies
- 4. Results without further restrictions for sector coupling technologies
- 5. Influence of enforced sector coupling with varying flexibility

6. Summary

Future European renewable energy expansion mainly based on fluctuating renewable energy

Differences in the electricity generation characteristics for wind and PV

- Availability
- Temporal
 - PV is correlating daily with demand
 - Wind is correlating seasonally with demand
- Spatial
 - Day-night dependency of PV generation results in high spatial correlation
 - Stronger local variability of wind generation leads to spatial balancing effects

	Mean hourly correlation	Mean seasonal correlation
PV	0,78	0,98
Wind Onshore	0,25	0,72
Wind offshore	0,29	0,75

Additionally, future RES expansion not only driven by techno-economical factors, but also by challenges regarding land use and acceptance

Varying future PV shares in Literature as basis for scenario development

Studies included with

- Europe as observed region
- Scenarios for the years beyond 2030
- Data for installed capacities or generation

Weather- and GIS-Data based optimal wind and PV expansion up to share of 80% of today's electricity demand in CWE

Resulting flexibility need in the scenarios

- More than 1000 GW fluctuating RES in each scenario
- Lower availability of PV results in higher capacity requirements
- Small differences in positive residual load peak
- Increasing amount surplus energy and negative peak with increasing PV share due to feed in characteristics

Model based analysis of optimal combinations of flexibility options

System boundaries and selected sectors coupling technologies

Trade-off between storages and NTC in case of unrestricted endogenous investment in flexibility options

Installed sector coupling technologies 70 ■ BEV (charging 60 power) 50 40 Electrolyser [GW] 64 30 20 Heat pump 10 0 High PV High Wind Ref

- High correlation of RES generation results in lowest NTC expansion and highest installed storage capacity in High PV scenarios
- Lowest installed conventional capacities in REF scenario due to storage and NTC mix
- Investment in full DSM potential to balance shorter term fluctuations
- Only endogenous investments in heat pumps due to high opportunity costs of benchmark process

Base scenarios

Goal to decarbonise energy system might enforce electrification of parts of other sector

Basic scenarios No restrictions for energy supply by PtX

Besides heat pumps no further endogenous investments in Power-to-X (PtX) technologies \rightarrow No electricity market based incentives for sector coupling within scenario framework

Enforced sector coupling

Exogenous restrictions for energy supply by PtX with low and high flexibility

	Power-to-Heat	Power-to-Vehicle	Power-to-Gas
	 Heat supply by heat pumps to cover 50% of district heat demand Additional electricity demand: 242 TWh 	 50 % BEV for passenger transport Charging power: 11 kW Additional electricity demand: 260 TWh 	 50 % of industries hydrogen demand by electrolysers Additional electricity demand: 195 TWh
Low flexibility (LF)	 Without thermal energy storages 	Uncontrolled charging	 Maximal full load hours of electrolysers
High flexibility (HF)	With thermal energy storages	Bi-directional charging	With hydrogen storages

Enforced sector coupling influences investment in flexibility options differently

EE²

- Increase in electricity demand requires additional power plant capacities
- Higher flexibility of PtX decreases
 need for additional power plants
- Low flexibility of PtX technologies slightly increases storage capacities in most of the scenarios
- Significant reduction of storage requirements with highly flexible sector coupling
- Small impact of sector coupling technologies on NTC expansion

TU Dresden, Chair of Energy Economics

Wind-PV share and level of flexibility influences the achievable emission reduction by sector coupling

EE²

- Electrification of other sectors decreases emissions in these sectors and compensates increase in emissions in electricity sector in most scenarios
- In base case, highest CO₂ emissions in the High PV scenario, due to highest amount of conv. electricity generation
- For inflexible sector coupling, CO₂ emissions increase with higher PV shares due to discontinuous PV generation and higher conv. electricity generation
- Flexible sector coupling allows for better use of RES surplus phases, resulting in emission reductions by 11 % (High Wind) and 20 % (High PV) compared to base case

*CO2 Emissions include benchmark processes as well as hourly emission factors for direct electricity demand and electricity for sector coupling

EE²

- Lower availability and higher correlation of PV generation lead to higher flexibility requirements in energy systems with higher PV shares
- Wind-PV share in total RES generation influences strongly composition of optimal flexibility provision
- An enforced sector coupling requires additional conventional capacities (if there is no further RES expansion) and less storages capacities
- Nevertheless, further emission reductions can be achieved when electrification substitutes carbon intensive benchmark processes in respective sectors
- Only with flexible sector coupling RES surplus phases can be used optimally and CO₂ Emissions can be reduced significantly

Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

»Wissen schafft Brücken.«