

Agenda

- 1. Problem setting
- 2. Research question
- 3. Methods
- 4. Key results
- 5. Conclusion

Simplified power sector

Problem setting

Expected outcome: some curtailment of renewable excess (or surplus) electricity (cp. Zerrahn et al. (2018))

Imposition of minimum RES share ϕ causes unintended effects

$$\sum Generation^{RES} \ge \phi \sum Demand$$

Source: own illustration

 Unintended storage cycling ≡ simultaneous, thus excessive, charging and discharging of the same storage unit

Research Questions

- 1. What are possible minimum RES share constraint formulations?
- 2. What is the effect of unintended storage cycling on model outcomes?
 - On storage: dispatch and investment
 - On remaining system elements: dispatch and investment, total system cost, prices
- 3. What are drivers of unintended storage cycling?
- 4. What are solution strategies?

Relevance

- RES targets commonly used in climate policy, e.g. in DE (65% in electricity sector by 2030) and USA (100% by 2035)
- Numerical models used for research & policy consulting → unintended storage cycling potentially distorts model outcomes, thus also policy recommendations

Model	renewable share i	conventional n demand	renewable share in	conventional generation	consideration storage losses	CO_2 budget	CO ₂
Calliope	x	x	x	x	partial	x	х
E2M2	x				complete	x	x
DIETER		x			complete	x	x
ENTIGRIS	x	x			no		x
LIMES-EU	x		x		partial	x	x
oemof	x	x			no	\mathbf{x}	x
PyPSA	x		x		no	x	x
REMix	x		x		partial	x	х
EMMA	x				no		
anyMOD						x	x
dynELMOD						x	x
ELTRAMOD						x	x
ISAaR						x	x

Storage cycling has not yet been covered in literature*

^{*}to the best of our knowledge

Methods: 12 implementation strategies

Investigated constraints

- 1. Minimum RES share in total demand
- 2. Minimum RES share in total generation
- Maximum conventional share in total demand
- 4. Maximum conventional share in total generation

Variations per constraint

- a) No SLCR: Storage losses covered by conventionals
- b) Proportionate SLCR: Storage losses partially covered by RES and conventionals
- c) Complete SLCR: Storage losses completely covered by RES

base

Methods: numerical analysis

Stylized numerical power sector model → reduced DIETER (Zerrahn et al., 2017)

- Used in Zerrahn et al. (2018)
- Implemented in DIETERpy (Gaete et al., 2020)
- Linear, partial equilibrium model
- One region ("copper-plate")
- 8760 h of target year

- Power sector only
- Annual demand = 504 TWh
- Minimum RES share $\phi = 80\%$

Model Input Output Techno-economic parameters Total system cost → MIN Investment decisions (capacity) Conventional generators (coal, Annualized investment costs Conventional generators Fixed & variable costs RES generators ocgt) RES generators (wind, pv) Storage Storage (mid-term, Subject to comparable to pumped hydro) • Electricity provision at all times Generation restrictions Hourly dispatch (energy) Hourly time-series Storage restrictions Conventionals RES availability Minimum RES share RES • electricity demand Storages

Impact on annual dispatch

Unintended storage cycling

No unintended storage cycling

Impact on hourly generation and price profiles

Unintended storage cycling

No unintended storage cycling

Unintended storage cycling – "medical report"

Unintended storage cycling occurrences

2000 -1750 -1500 -1250 -1000 -750 -500 -250 -0 none proportionate complete SLCR level

Total system costs

- SLCR: Storage Losses Coverered by Renewables
- Models with complete SLCR by RES avoid unintended storage cycling

DIW BERLIN

Impact on optimal investment decisions

SLCR: Storage Losses Covered by Renewables

Impact on optimal dispatch decisions

SLCR: Storage Losses Covered by Renewables

Increased generation from coal \rightarrow rise in emissions

SLCR: Storage Losses Covered by Renewables

DIW BERLIN

Energy flows in a fully renewable system

Unintended storage cycling

No unintended storage cycling

Conclusion

Solution strategies

- Complete coverage of storage losses by RES prevents unintended storage cycling
- Possible alternatives
 - Theoretical RES generation potential → imprecise, underachievement
 - CO2 budget, CO2 price

Summary

- Unintended storage cycling has significant effect on model outcomes → distortion of policy recommendation
- Implementation matters → complete storage losses in RES constraint is a necessity for cost-optimal decarbonization pathways

References

Zerrahn, Alexander, and Wolf-Peter Schill. "Long-run power storage requirements for high shares of renewables: review and a new model." *Renewable and Sustainable Energy Reviews* 79 (2017): 1518-1534.

Zerrahn, Alexander, Wolf-Peter Schill, and Claudia Kemfert. "On the economics of electrical storage for variable renewable energy sources." *European Economic Review 108* (2018): 259-279.

Gaete-Morales, C., Kittel, M., Roth, A., Schill, W. P., & Zerrahn, A. (2020). DIETERpy: a Python framework for The Dispatch and Investment Evaluation Tool with Endogenous Renewables. *arXiv* preprint arXiv:2010.00883.

Thank you for your attention!

DIW Berlin — German Intitute For Economic Research e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Martin Kittel mkittel@diw.de