

Policy implications of spatially differentiated renewable energy promotion: A multi-level scenario analysis of onshore wind auctioning in Germany

Siamak Sheykhha^a, Frieder Borggrefe^b, Reinhard Madlener^{a,c,d}

 ^a Chair of Energy Economics and Management, Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics / E.ON ERC, RWTH Aachen University
^b Institute of Engineering Thermodynamics, German Aerospace Center (DLR)
^c Department of Industrial Economics and Technology Management, NTNU, Trondheim, Norway
^d JARA Energy (Jülich–Aachen Research Alliance – Section Energy)

ENERDAY 2021, Online – April 9, 2021

CN I Future Energy Consumer Needs and Behavior

- Background and research objectives
- Hybrid modeling approach
- Regional renewable auction
- German RES Act (EEG) in HECTOR
- Results
- Conclusions

Onshore Wind Auctioning results 2017, 2018 and 2019 (Germany)

- Current renewable auction designs induce a high share of renewable power plants at efficient sites
- Inefficient allocation without consideration of transmission restrictions, causes an inefficient system configuration in the long term
- Well-designed auctions can counteract these inefficiencies and help to reach regional targets of the federal states [NEP]

Research objectives, Related literature

Wind potential

Can the federal states reach their long-term wind targets?

Market design

- What impact do the current remuneration scheme and auction design have on the regional distribution of wind energy?
- How does regional auction compare to different auction design?
- What regulatory measures and incentives on a German level may be beneficial to reach the regional (state-level) targets?

Related literature overview

- Bichler, M., Grimm, V., Kretschmer, S., & Sutterer, P. (2020). Market design for renewable energy auctions: An analysis of alternative auction formats. *Energy Economics*, 92, 104904.
- Grimm, V., Rückel, B., Sölch, C., & Zöttl, G. (2019). Regionally differentiated network fees to affect incentives for generation investment. *Energy*, 177, 487-502.
- Anatolitis, V., & Welisch, M. (2017). Putting renewable energy auctions into action—An agent-based model of onshore wind power auctions in Germany. *Energy Policy*, *110*, 394-402.
- Kreiss, J., Ehrhart, K. M., & Haufe, M. C. (2017). Appropriate design of auctions for renewable energy support–Prequalifications and penalties. *Energy Policy*, *101*, 512-520.

Hybrid modeling approach – Overview

E.ON Energy Research Center

Geodata analysis (ENDAT model)

German RES Act (EEG) – Implementation in HECTOR

Renewable Auction Model (RAM)

System Dynamics heuristics for auctioning

Renewable auction heuristics:

- Allocation by priority
- Learning of bidders
- As long as the bidders are small relative to the market, they are price takers, and therefore can make money by pushing utilization as high as possible at the clearing price

Model logic of System Dynamics model HECTOR

Auction designs

National auction

- Benchmark of alternative auctions, reference yield model
- Four auctions per year (February, May, August, October)
- Yearly tendered capacity in auction: 2700 MW

Regional auction

- One regional auction per year, no reference yield model
- Considering regional target capacities (demand based on regional target)

Auction design elements	Information
Pricing	PAB for all, uniform for energy citizen
Auction volume	2700 MW per year
Remuneration scheme	Energy-related remuneration
Price cap	7 €-ct/kWh in 2017, from 2018 onwards average of highest accepted bid in the last three rounds
Frequency	3-4 times per year
Commitment period	20 years

Model setup

- Bidders are price takers
- 42 different technology groups based on wind speed classes
- Implementing learning process of bidders from global behavior of the system

Setting up the model: Market observation & Simulation results

Remaining wind potential in each state – based on current regulation

Share of remaining potential onshore wind sites

Number of wind energy assets (WEA) that can be installed in each federal state

Market Observation #1: Cumulative and awarded capacity (till 2017)

Cumulative capacity	till 2017	Distribution of awar capacity in 2018	ded	Distribution of awarded capacity in 2018			
Historical data		Available potential accord	ing to NEP	Available potential according to MaxW			
	Installed		Installed		Installed		
States	Capacity[MW]	States	Capacity[%]	States	Capacity[%]		
Baden-Württemberg	1529	Baden-Württemberg	7.7	Baden-Württemberg	13.7		
Bavaria	2515	Bavaria	0	Bavaria	35.2		
Brandenburg	7081	Brandenburg	5.4	Brandenburg	0		
Hesse	2201	Hesse	2.8	Hesse	16.2		
Mecklenburg-Vorpommern	3366	Mecklenburg-Vorpommern	16.6	Mecklenburg-Vorpommern	7.8		
Lower Saxony	11,156	Lower Saxony	19	Lower Saxony	0		
North Rhine-Westphalia	5773	North Rhine-Westphalia	4.9	North Rhine-Westphalia	11.5		
Rhineland-Palatinate	3589	Rhineland-Palatinate	7.2	Rhineland-Palatinate	6.7		
Saarland	476	Saarland	0	Saarland	3.5		
Saxony	1227	Saxony	8.1	Saxony	4.9		
Saxony-Anhalt	5139	Saxony-Anhalt	8.8	Saxony-Anhalt	0		
Schleswig-Holstein	6964	Schleswig-Holstein	10.2	Schleswig-Holstein	0		
Thuringia	1567	Thuringia	9.2	Thuringia	0		
Sum	52583	Sum	100	Sum	100		

Sources: Federal Network Agency (2019b), Grimm et al. (2017)

Market Observation #2: Scenario building based on observation of previous auctions

Observation: Approved wind farm sites per year (MW)

Assumption 2: Distribution based on available area

Results: Number of approval varies highly (Geo data tool)

Results: Diversity of bidders

Main results:

□ National auction:

- There is a relationship between award numbers and amount of investment in regions with lower chance of winning in national auction.
- Increasing award numbers leads to less investment in southern states
- Northern states are dominant in this auction design

Results: Diversity of bidders

Main results:

□ Regional auction:

- Regional auctions can promote the regions with a lower wind quality
- Regional auction shows less possible tendered capacity for northern states
- At least 70% of allocated capacity in southern states belong to Bavaria
- Investors tend to install their plants in these regions much more frequently because they are competing with rivals with similar wind potentials in their state
- Some states (SA, BB) produce very low in all scenarios

Results: Average price in different auction designs

6.5

Price (€-ct/kWh)

5

4.5

0

2

4

STATE-level auction

O-Scenario

Scenario 2

Scenario 3

NORTH-SOUTH auction

- Higher award numbers leads to lower price
- In scenario three, bidders bid near to their MC (the more competitive the market is, the more allocative efficiency is found)
- Higher number of auctions and increase of learning stabilize price development

 Average price of southern states can reach higher level in scenario one and two (near to 7 €-ct/kwh)

Auction round

6

10

12

- Increasing no. of awards in regions with higher wind potential (e.g. southern states) leads to lower prices
- Higher growth price development; increase of bidders' awarded prices

- Lower price development especially for scenario three
- Higher share of southern (states with higher costs) lead to lower average price → Because of decrease in bidshading

Results: Overall saving in different auction designs

Results:

- National auction: simulation results show a 2% and a 73% reduction in support payments in Scenarios 2 and 3, respectively
- Regional auction: the support payment increase in regional auctions when more contracts are issued by auctioneer
- Policy implication: Regional auction has lower societal mechanism except for scenario three
- When the level of participation of bidders is low/medium, regional auction designs have superiority over the national auction design (from the perspective of saving on support payments)

Support payment over the 20 years' lifetime of a wind farm [million €]

Na1	Na2	Na3	ReI1	ReI2	ReI3	ReII1	ReII2	ReII3
6.13	5.37	0	1.29	3.76	3.75	1.58	4.74	7.31
16.28	13.43	0	4.08	12.24	16.42	4.08	12.24	18.41
0	0	0	0	0	0	0	0	0
0.08	0.15	0.25	0	0	0	0.02	0.06	0.12
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1.09	1.34	0.56	0.27	0.84	2.19	0.04	0.64	0.87
0.002	0.005	0.01	0	0	0	0	0	0
0.22	0.41	0.69	0.04	0.14	0.34	0.05	0.15	0.31
0.17	0.36	0.53	0.04	0.14	0.19	0.04	0.14	0.26
0.40	0.47	0.55	0.10	0.37	0.98	0.10	0.25	0.41
0.75	1.32	1.90	0.017	0.02	0.02	0.18	0.59	1.06
0.66	0.94	1.31	0	0	0	0.16	0.43	0.75
0	0	0.01	0	0	0	0	0	0
1.76	2.19	1.07	0	0	0	0.44	1.47	1.68
0	0	0	0	0	0	0	0	0
27.6	26.02	7.30	5.85	17.52	24.09	6.86	20.75	31.27
	$\begin{array}{c} 6.13\\ 16.28\\ 0\\ 0.08\\ 0\\ 0\\ 1.09\\ 0.002\\ 0.22\\ 0.17\\ 0.40\\ 0.75\\ 0.66\\ 0\\ 1.76\\ 0\\ \end{array}$	$\begin{array}{cccc} 6.13 & 5.37 \\ 16.28 & 13.43 \\ 0 & 0 \\ 0.08 & 0.15 \\ 0 & 0 \\ 0 & 0 \\ 1.09 & 1.34 \\ 0.002 & 0.005 \\ 0.22 & 0.41 \\ 0.17 & 0.36 \\ 0.40 & 0.47 \\ 0.75 & 1.32 \\ 0.66 & 0.94 \\ 0 & 0 \\ 1.76 & 2.19 \\ 0 & 0 \\ \end{array}$	$\begin{array}{cccccc} 6.13 & 5.37 & 0 \\ 16.28 & 13.43 & 0 \\ 0 & 0 & 0 \\ 0.08 & 0.15 & 0.25 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1.09 & 1.34 & 0.56 \\ 0.002 & 0.005 & 0.01 \\ 0.22 & 0.41 & 0.69 \\ 0.17 & 0.36 & 0.53 \\ 0.40 & 0.47 & 0.55 \\ 0.75 & 1.32 & 1.90 \\ 0.66 & 0.94 & 1.31 \\ 0 & 0 & 0.01 \\ 1.76 & 2.19 & 1.07 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Results:

- Regional auctions do <u>not</u> cause markedly higher support payments per unit of installed capacity in **any region**
- Support payment per unit of installed capacity does <u>not</u> change markedly for the three scenarios of the regional auctions

Support payment per unit of installed capacity (k€/MW)

Region	Na1	Na2	Na3	ReI1	ReI2	ReI3	ReII1	ReII2	ReII3
Baden-Wuerttemberg	17.41	16.88	0	17.91	17.99	17.94	17.95	19.03	18.55
Bavaria	18.50	19.98	0	18.54	13.83	18.55	18.52	18.54	18.31
Berlin	0	0	0	0	0	0	0	0	0
Brandenburg	3.63	3.48	3.47	0	0	0	3.88	3.63	4
Bremen	0	0	0	0	0	0	0	0	0
Hamburg	0	0	0	0	0	0	0	0	0
Hesse	12.38	10.63	4.59	12.27	11.74	11.71	10.74	10.57	6.30
Mecklenburg-Western Pomerania	0.01	0.01	0.009	0	0	0	0.003	0	0
Lower Saxony	1.66	1.64	1.66	0	0	0	1.73	1.81	1.62
North Rhine-Westphalia	3.86	3.67	3.81	3.63	3.63	2.04	3.97	3.63	3.76
Rhineland-Palatinate	9.09	8.70	8.73	9.09	11.21	10.48	9.26	9.09	9.31
Saxony	4.87	5.05	4.44	0.44	0.33	0.33	4.93	5.10	4.71
Saxony-Anhalt	6	6.52	5.26	0	0	0	4.43	6.01	6.250
Saarland	0	0	3.70	0	0	0	0	0	0
Thuringia	11.42	12.44	15.97	0	0	0	11.48	12.14	12.63
Schleswig-Holstein	0	0	0	0	0	0	0	0	0

- 1. Auction design **can affect** the promotion of onshore wind significantly
- 2. Current **reference yield model** is not a **sufficient** tool for the promotion of wind onshore in Germany
- 3. We recommend using **different scenarios** based on previous **permitted capacity** for analyzing capacity auctions
- Regional auction helps to promote wind power in the southern states of Germany
- 5. There is a trade-off between increasing shares of bidders from the southern states (a higher LCOE) and the average auction price
- 6. The regional auctioning can lead to **support payment savings**, and should thus be considered in renewable energy support policy design

Contact details:

Chair of Energy Economics and Management Institute for Future Energy Consumer Needs and Behavior (FCN), E.ON Energy Research Center

Mathieustraße 10 52074 Aachen, Germany

Siamak Sheykhha, Reinhard Madlener Tel: +49 241 80 49841 Tel: +49 241 80 49820

siamak.sheykhha@eonerc.rwth-aachen.de RMadlener@eonerc.rwth-aachen.de http://www.eonerc.rwth-aachen.de/FCN

