

Market integration of Power-to-Gas during the energy transition – Assessing the role of carbon pricing

Michael Bucksteeg, Jennifer Mikurda, Christoph Weber 09.04.2021, Enerday 2021

- Energy transition
 - Renewable expansion induces flexibility requirements
 - Generation mix transitionally based on conventional technologies
- Market integration
 - Growing importance of Power-to-Gas (PtG) ¹
 - BUT: lack of consistent incentives
- Main contribution
 - Extension of an optimization model covering electricity and heating markets by PtG
 - Analysis of different regulatory settings regarding levies and CO₂ pricing

Figure 1: Installed and planned electrolyser capacity in Germany Sources: DVGW (2020), TÜV SÜD (2020), BMWi (2020)

Motivation	1
Methodology	2
Results and Discussion	3
Conclusion	4

Utilization of Power-to-Gas in electricity markets

Open-Minded

General considerations

- Calculus of the dispatch decision
 - Definition of the value of the converted gas*,
 i.e. use value

$$c_t^{PtG,use} = \left(c_t^{fuel} + f_{fuel}^{CO2-factor} \cdot c_t^{CO2}\right) \cdot \eta_{PtG}$$

 Utilization of the electrolyser when electricity price is lower than (or equal to) the use value

$$\lambda_t^{el} + \pi_t - c_t^{PtG,use} \ge 0 \perp W_t^{DA} \ge 0$$

 Electricity price is determined by variable generation costs of the marginal technology

$$\lambda_t^{el} = \frac{c_t^{fuel} + f_{fuel}^{CO2-factor} \cdot c_t^{CO2}}{\eta_u} + c_u^{O\&M}$$

Figure 2: Schematic representation of the utilization of PtG

Carbon pricing and Power-to-Gas

Open-Minded

General considerations

- Calculus of the dispatch decision
 - Definition of the value of the converted gas,
 i.e. use value

$$c_t^{PtG,use} = \left(c_t^{fuel} + f_{fuel}^{CO2-factor} \cdot c_t^{CO2}\right) \cdot \eta_{PtG}$$

 Utilization of the electrolyser when electricity price is lower than (or equal to) the use value

$$\lambda_t^{el} + \pi_t - c_t^{PtG,use} \ge 0 \perp W_t^{DA} \ge 0$$

 Electricity price is determined by variable generation costs of the marginal technology

$$\lambda_t^{el} = \frac{c_t^{fuel} + f_{fuel}^{CO2-factor} \cdot c_t^{CO2}}{\eta_u} + c_u^{O\&M}$$

Use value effect

Figure 3: Effects of carbon pricing on PtG utilization

Methodology

Open-Minded

Market model overview

- Joint market model (JMM)
 - Linear problem with hourly resolution
 - min (system costs)
 - Subject to side constraints
 - (1) Demand restriction
 - (2) Balance equations
 - (3) Transmission constraints
 - (4) Technical restrictions
 - Decision variable: dispatch
 - Modelling of Day-ahead electricity markets, balancing markets and heat markets

Figure 4: Geographical coverage of the JMM

Model extension PtG

- Modelling of PtG in the JMM
 - Process can be interpreted as filling of a virtual storage:
 - 1) Utilization of the electrolyser leads to additional electricity consumption $W_{t,a,i}^{DA}$
 - 2) Electricity is converted to gas subject to conversion losses (i.e. conversion rate $\eta_{a,i}$)
 - 3) Synthetic gas is then fed into the gas network
 - 4) Extraction from the gas network $P_{t,a,i}^{PtG}$
 - \triangleright Balance equation: $V_{t,a,i}^{PtG} = V_{t-1,a,i}^{PtG} + \eta_i \cdot W_{t,a,i}^{DA} P_{t,a,i}^{PtG}$
 - Further model adaptions:
 - Constraints limiting virtual storage content and electricity consumption including provision of control reserves
 - Objective function: addition of the use value
 - Demand restriction: addition of electricity consumption of the electrolyser

Figure 5: Schematic representation of the PtG process

Motivation	1
Methodology	2
Results and Discussion	3
Conclusion	4

Results and Discussion

Open-Minded

Scenario framework and data

- Scenario characteristics
 - European electricity market in 2025 with a focus on Germany
 - Based on TYNDP Best Estimate Scenario 2025
 - Fuel prices based on recent futures prices for 2022
 - Electrolysers exempted from EEG levy
- Power-to-Hydrogen (PtH₂)
 - 2 GW installed capacity, 73 % conversion rate
 - Application: mobility
- Power-to-Methane (PtM)
 - 2 GW installed capacity, 60 % conversion rate
 - Application: replacement of natural gas

Scenario		Status-quo	Moderate	Ambitious		
CO ₂ price	€/tCO ₂	26.00	66.75	107.50		
Marginal costs						
Lignite	€/MWh _{el}	28.80	67.73	106.66		
Hard Coal	€/MWh _{el}	44.15	78.20	112.25		
Natural Gas	€/MWh _{el}	53.03	69.73	86.43		
Use value without CO ₂ crediting						
PtH ₂	€/MWh _{el}	40.87	40.87	40.87		
PtM	€/MWh _{el}	12.72	12.72	12.72		
Use value with CO ₂ crediting						
PtH ₂	€/MWh _{el}	47.48	57.85	68.20		
PtM	€/MWh _{el}	18.18	26.64	35.16		

Table 1: Scenario matrix: CO2 prices, marginal costs and use values

System and market perspective

- Status quo, without CO₂ crediting:
 - Utilization of PtH₂ of ~1000 h/year, but only 20 h/year for PtM (see also 3-CO2 low)
- Impact of increasing CO₂ prices:
 - Lower utilization of coal, which is balanced by generation from gas and imports
 - Reduced utilization/consumption of PtG
 → Generation cost effect

Figure 6: Generation and import for Germany in 2025 (Cons: consumption of flexibilities)

- Status quo, without CO₂ crediting:
 - Utilization of PtH₂ of ~1000 h/year, but only 20 h/year for PtM (see also 3-CO2 low)
- Impact of increasing CO₂ prices:
 - Lower utilization of coal, which is balanced by generation from gas and imports
 - Reduced utilization/consumption of PtG
 → Generation cost effect
- Impact of crediting of avoided CO₂ emissions:
 - − Higher utilization of PtG→ Use value effect
 - In case of low CO₂ prices PtG consumption is supplied by imports and generation from coal (see 4-CO2 low, crediting)

Results and Discussion

Open-Minded

System and market perspective

- Increasing CO₂ prices
 - Reductions of CO₂ emissions for Germany are in line with the impacts on the generation mix
 - Due to the coal-gas-switch emissions reductions for the moderate scenario are relatively higher

- Crediting of avoided CO₂ emissions
 - Higher CO₂ emissions driven by increased consumption from PtG and generation from lignite and hard coal
 - This effect disappears in case of high CO₂ prices

Figure 7: CO2 emissions for Germany in 2025

Results and Discussion

UNIVERSITÄT
DUISBURG
ESSEN

Open-Minded

Interactions between CO₂ prices and PtH2

- Low CO₂ price (CO₂ low):
 - Crediting of avoided CO₂ emissions increases the use value and leads to a high utilization of 4641 h/a
 - BUT: flat price duration curve with coal plants being marginal in most of the time
 - Use value effect dominates generation cost effect
- High CO_2 price (CO_2 amb):
 - CO₂ crediting increases utilization of PtH₂ to 629 h/a
 - BUT: increase is limited by the steeper price duration curve
 - > Generation cost effect balances use value effect
- ➤ Crediting of avoided CO₂ emissions supports the integration of PtH₂, but can be environmentally questionable depending on the CO₂ price level

Motivation	1
Methodology	2
Results and Discussion	3
Conclusion	4

Conclusion

- **Key issue**: Growing importance of Power-to-Gas (PtG) during the energy transition, but regulatory barriers due to levies and inconsistent pricing of CO₂ emissions
- Main contribution: shed a light on different regulatory settings regarding levies and CO₂ pricing and their implications for the integration of PtG into the electricity markets
- Results:
 - Electrolysers being exposed to the EEG levy PtG are not utilized (see Appendix)
 - Increasing CO₂ prices induce decreased utilization of PtG → Generation cost effect
 - Crediting of avoided CO_2 emissions supports the integration of PtG \rightarrow Use value effect
- ➤ An improved regulatory framework, e.g. EEG exemption and CO₂ crediting, can help to integrate PtG into electricity markets, but might lead to adverse effects on CO₂ emissions when CO₂ prices are too low

Thank you for your attention!

Michael Bucksteeg

House of Energy Markets and Finance University of Duisburg-Essen Universitätsstr. 12 | 45117 Essen | Germany

Email: Michael.Bucksteeg@uni-due.de

LinkedIn: https://www.linkedin.com/in/michael-bucksteeg

References

Open-Minded

BMWi (2020): Die Nationale Wasserstoffstrategie, online: https://www.bmwi.de/ Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.html

Böcker, B., & Weber, C. (2015). Different storages and different time-variable operation modes of energy storages in future electricity markets. 2015 12th International Conference on the European Energy Market (EEM), 1–6. https://doi.org/10.1109/EEM.2015.7216686

dena (2018): dena-Leitstudie Integrierte Energiewende, online: https://www.dena.de/
https://www.dena.de/
https://www.dena.de/
https://www.dena.de/

DVGW (2020): Power to Gas: Schlüsseltechnologie der Energiewende, online: https://www.dvgw.de/themen/energiewende/power-to-gas/

energate (2019): Marktdaten, online: https://www.energate-messenger.de/markt/

IEA (2018): World Energy Outlook 2018, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2018

TÜV SÜD (2020): Power-to-Gas-Anlagen in ersten kommerziellen Anwendungen, online: https://www.tuvsud.com/de-de/presse-und-medien/2019/maerz/power-to-gas-anlagen-in-ersten-kommerziellen-anwendungen

ÜNB (2017): Genehmigung des Szenariorahmens für NEP/O-NEP 2030 (BNetzA), online: https://www.netzentwicklungsplaene/netzentwicklungsplaene-2030-2017

ÜNB (2019): Genehmigung des Szenariorahmens zum NEP 2030 (Version 2019) (BNetzA), online: https://www.netzentwicklungsplan.de/de/netzentwicklungsplan-2030-2019

