

Martin Lieberwirth | Hannes Hobbie

Decarbonizing the Industry Sector and its Effect on Electricity Transmission Grid Operation - Implications from a Model Based Analysis for Germany

21st September 2022

Agenda

1 • Motivation

2 Modeling Congestion Management Optimization

3 • Data and Scenario Framework

4 • Optimization Results and Conclusion

Lieberwirth | Hobbie Enerday 2022

Agenda

Motivation

Modeling Congestion Management Optimization

3 • Data and Scenario Framework

4 • Optimization Results and Conclusion

Lieberwirth | Hobbie Enerday 2022

Research shows that green hydrogen production of electrolyzer capacity planned for Germany in 2030 imputes increased electricity demand

- Green Hydrogen electrolysis is considered a promising technology in providing low-carbon fuels and feedstock to decarbonize the industry sector
 - Serman Legislation plans to expand Electrolyzer Capacities up to **10 GW** until 2030
 - > Production will need an additional electricity demand of approximately **28 TWh**
- Research shows, the additional load by electrolyzers pose a large impact on the transmission grid operation
- Recent studies focus on electrolyzer distribution near renewable power production sites
 - Recommendations towards either a near-supply or near-demand distribution is not possible
- Evaluating the effects of a near-demand green hydrogen production on transmission grid operation seems necessary

Agenda

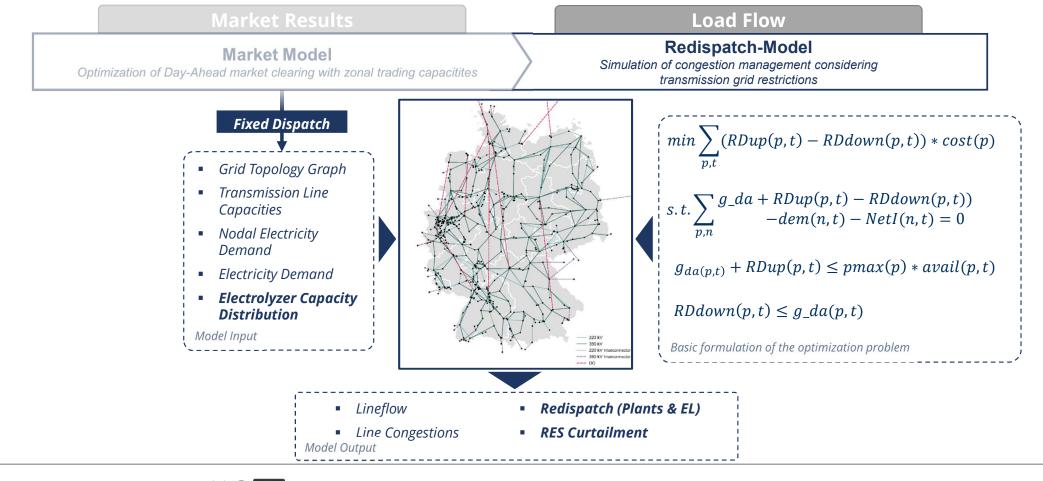
- 2 Modeling Congestion Management Optimization
- **3** Data and Scenario Framework
- 4 Optimization Results and Conclusion

Lieberwirth | Hobbie Enerday 2022

Methodology: Use of a two-stage Market- and Gridmodelling

Market Results	Load Flow	
Market Model Optimization of Day-Ahead market clearing with zonal trading capacitites	Redispatch-Model Simulation of congestion management considering transmission grid restrictions	

Lieberwirth | Hobbie Enerday 2022


Methodology: Use of a two-stage Market- and Gridmodelling

Methodology: Use of a two-stage Market- and Gridmodelling

DIECHNISCHE UNIVERSITÄT DRESDEN CRESDEN MODE

Lieberwirth | Hobbie Enerday 2022

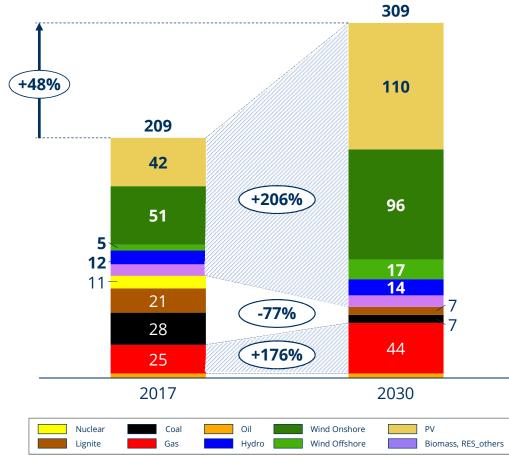
Agenda

Motivation

2 • Modeling Congestion Management Optimization

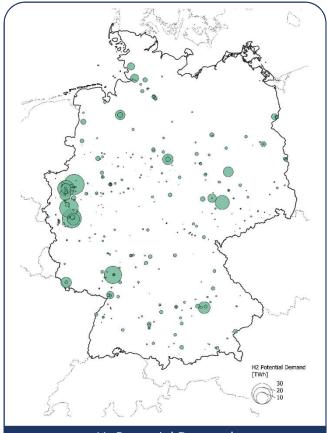
3 • Data and Scenario Framework

4 • Optimization Results and Conclusion



Lieberwirth | Hobbie Enerday 2022

Underlying input data towards the target year 2030 is based on TYNDP2020



- RES Capacities almost doubled
- No Nuclear power, highly reduced Lignite and coal capacities
- Additional gas-fired power plant capacities are spatially assigned to nodes where coal, lignite and nuclear power is phased out to compensate for the loss of flexible generation capacitites
- Fuel prices, CO₂ prices, NTC's and the generation capacities of other countries are taken from ENTSOE TYNDP 2020 scenario *"Distributed Energy"*
- Transmission Grid expansion is taken from NEP2030 and TYNDP2020

The scenario framework is based on specific hydrogen demand for industry processes

H₂ Potential Demand

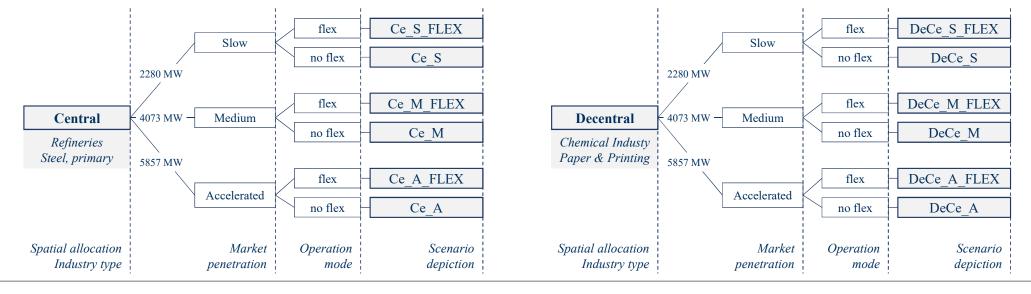
- The order in which the industry sector is decarbonized affects the regional distribution electrolyzer capacities
- H₂ demand is taken from a study by Neuwirth et al. (2022)*

Industry Sector	Potential H ₂ Demand [TWh]	No. of Sites	TRL**	Regional Distribution
Refineries	22.6	16	8-9	Central
Chemical Industry	161.0	30	8-9	Decentral
Paper and Printing	30.5	162	8-9	Decentral
Non-metallic Minerals	8.3	46	4-5	Decentral
Mineral Processing	30.7	84	4-5	Decentral
Metal Processing	18.0	30	4-5	Decentral
Non-ferrous metals	3.7	4	4-5	Central
Steel, primary	52.2	8	7-8	Central

* Neuwirth, M., Fleiter, T., Manz, P., Hofmann, R., 2022. The future potential hydrogen demand in energy-intensive industries - a sitespecific approach applied to germany. Energy Conversion and Management 252. doi:10.1016/j.enconman.2021.115052.

** Technology Readiness Level: Describes the technological maturity for short- and medium-term implementation of hydrogen

Lieberwirth | Hobbie Enerday 2022

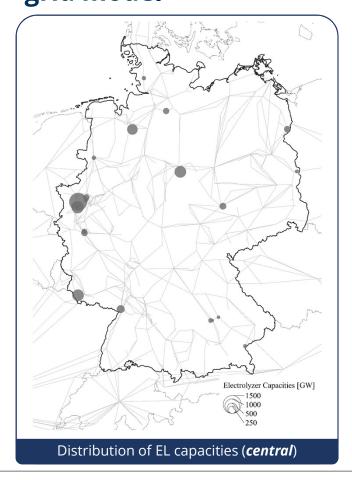


12 different scenario cases regarding spatial distribution of electrolyzer capacities and their operation mode are considered

- 1. Considering only industries with high TRL (*Refineries, Chemical Industry, Paper & Printing* and *Primary Steel*)
- 2. Distinguish between a *centralized* and *decentralized* spatial allocation
- 3. Assuming a *slow, medium* and *accelerated* market penetration of electrolyzer capacities
- 4. Considering two different modes of electrolyzer operation

TECHNISCHE UNIVERSITÄT DRESDEN

ee²



Lieberwirth | Hobbie

Enerday 2022

Spatial distribution of electrolyzer capacities forms additional input for the grid model

Distribution of EL capacities (*decentral*)

- Assignment of electrolyzer capacities to grid nodes is essential to determine effects on congestion management
- Centralized distribution (24 sites) concentrates electrolyzer capacities in Western and Northern Germany
- Decentralized distribution (192 sites) of electrolyzer capacities is more widespread with centres in West, East and South Germany
- Sensitivity of electrolyzer impact is reflected through different capacity volumes

Lieberwirth | Hobbie Enerday 2022

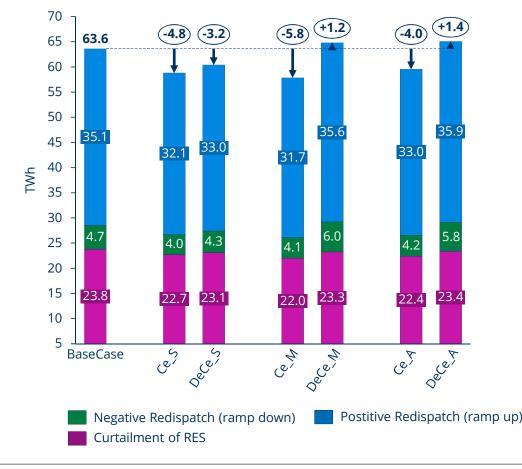
Agenda

Motivation

2 Modeling Congestion Management Optimization

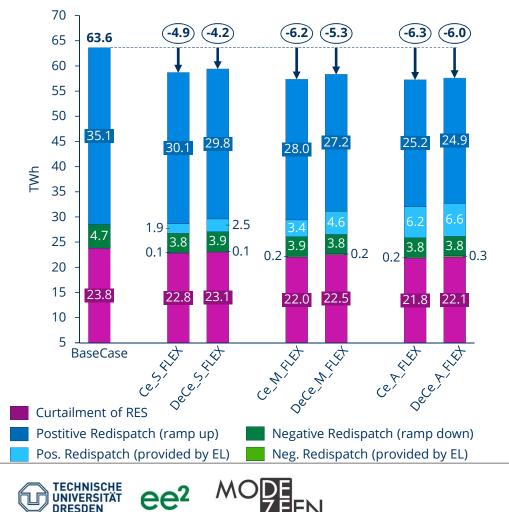
3 • Data and Scenario Framework

4 • Optimization Results and Conclusion



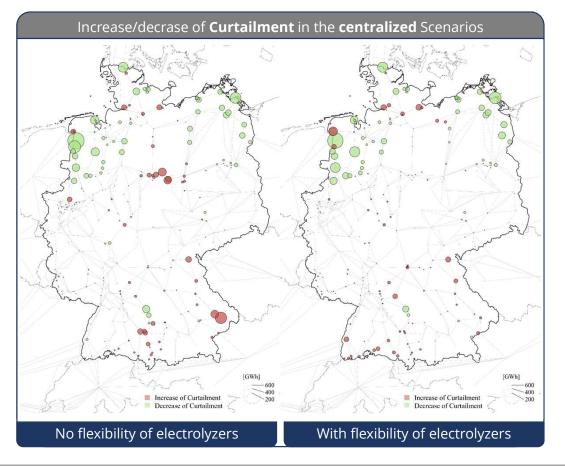
Lieberwirth | Hobbie Enerday 2022

<u>Aggregated Results (*no_flex*):</u> Electrolyzer distribution in the central scenario causes no additional increase in congestion management volumes


- Varying effects of electrolyzer operation on the transmission grid can be observed in every scenario compared to a benchmark base case
- Congestion management volume increases in a decentral distribution (chemical industry, paper & printing) with increasing penetration levels
- Congestion management volumes stay below the base case volumes in the central scenarios (chemical industry, primary steel)
- Reduced curtailment volumes can be observed in every scenario

1 2 3 4

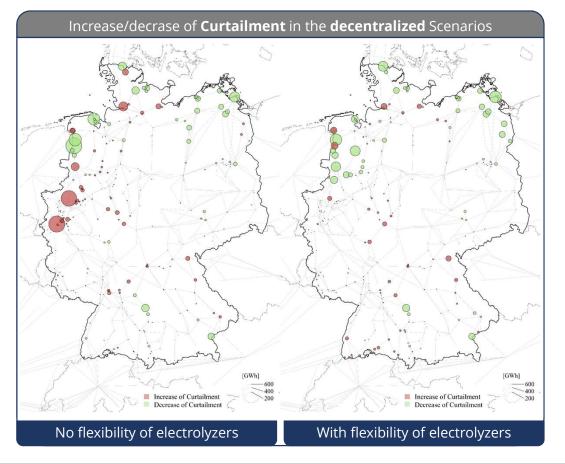
<u>Aggregated Results (*flex*):</u> Electrolyzer capacities contribute significantly to grid relief by providing a flexible load capacity



- Mitigation effects of electrolyzer operation on the transmission grid can be observed in every scenario compared to a benchmark base case
- Congestion management volume decreases in proportion to the market penetration of electrolyzer capacities
- Difference between the scenarios regarding their spatial distribution (central vs. decentral) varies only by small margin
- Electrolyzer redispatch increasingly replaces redispatch provided by conventional power stations
- Reduced curtailment volume observed in every scenario

1 2 3 4

<u>Regional Results (*centralized*):</u> Flexible operation of electrolyzers mitigate the increase in curtailment volumes


- Distribution of electrolyzer capacities coincides with regions of large curtailment
- Electrolyzer operation decreases curtailment volumes especially in North-West Germany considering both modes of operation
- Increase of curtailment in Central and South Germany in a scenario with no flexibility of electrolyzer
 - Additional load from electrolyzers exerts stress on transmission grid lines in certain regions
 - Effect can be counterbalanced if electrolyzers are dispatched for congestion management

<u>Regional Results (*decentralized*):</u> Electrolyzer distribution in the decentral scenario risks integration of RES feed-in along critical corridors

- Distribution of electrolyzer share a great proximity with electricity load centres in West and South Germany
- Curtailment increase significantly at two nodes in West Germany
- Electrolyzer operation in the decentral scenario creates additional bottlenecks at the north-tosouth corridor
 - Integrating large volumes of RES feed-in is compromised
- Bottlenecks can be avoided if a flexible operation is assumed

Conclusion: Near-site production of green hydrogen at locations with refineries and steel production should be prioritized

- Integrating increasing amounts of electrolyzer capacities poses particular challenges for transmission system operators
- Renewable energy integration can **benefit** from electrolyzer operation depending on the geographic distribution
 - Total congestion volumes can be reduced if electrolyzer capacities are installed at locations with refineries and steel production facilities regardless of the operation mode
 - Operation of electrolyzer capacities at chemical industry and paper & printing facilities additionally stresses transmission grid lines

Conclusion: Electrolyzer capacities have to be considered a flexibility option when designing future congestion management frameworks

- A regulatory framework how electrolyzers can be integrated into ancillary services is needed especially when industries are spatially decentralized
- Regulations must enable owners to participate in grid management
- Incentives for participation in congestion management have to be considered in future frameworks, involving some opportunity costs for electrolyzer owners
 - Future research should investigate potential design options for congestion management frameworks and incentive mechanisms for electrolyzer owners

Lieberwirth | Hobbie Enerday 2022

A wide field of research opportunities opens regarding congestion management

- Conducted research at the chair of Energy Economics looking into to the effects of electrolyzer operation on transmission grid operation:
 - 1. Decarbonizing the Industry Sector and its Effect on Electricity Transmission Grid Operation – Implications from a Model Based Analysis for Germany
 - Working paper: <u>https://www.econstor.eu/handle/10419/261839</u>
 - 2. Impact of hydrogen deployment scenarios on the economic efficiency of electricity transmission system operation: A model-based case study for the German market area
 - Working paper: <u>https://www.econstor.eu/handle/10419/262112</u>

Thank you for your attention

Martin Lieberwirth

Tel.: +49 (0) 351/463-39766 Email: <u>martin.lieberwirth@tu-dresden.de</u> Web: ee2.biz

Chair of Energy Economics Technische Universität Dresden Münchner Platz 3 01069 Dresden

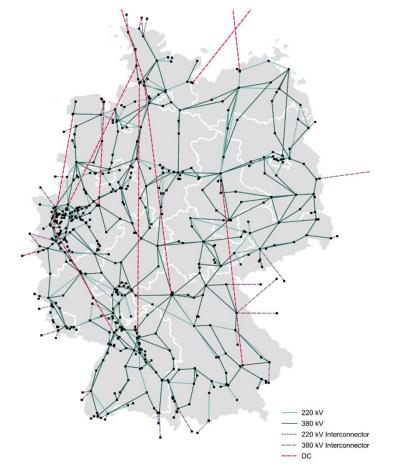
Hannes Hobbie

 Tel.:
 +49 (0) 351/463-39894

 Email:
 hannes.hobbie@tu-dresden.de

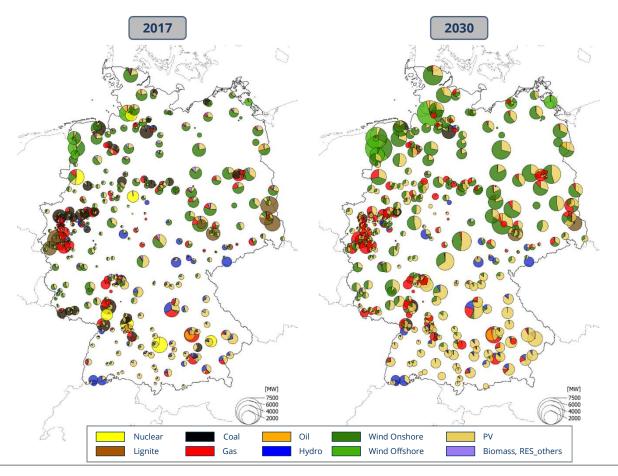
 Web:
 ee2.biz

Lieberwirth | Hobbie Enerday 2022


Back-up

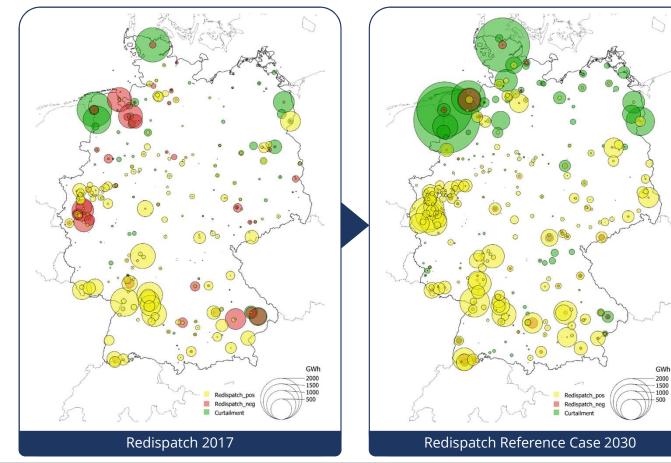
Lieberwirth | Hobbie Enerday 2022

ELMOD - a tool to look into the transmission grid optimization



- Model
 - A model to evaluate the volume of remedial actions (Redispatch and Curtailment) and Lineflows
 - Full year resolution, calculated with rolling planning (48h each horizon with an additional 24h overlap)
 - Implemented in GAMS as a linear program
 - Lineflow ist modelled with DC approximation to keep the problem linear
 - Minimization of system costs for remedial actions
- Grid
 - ELMOD includes the european transmission grid with voltage levels between 150kV and 750kV
 - For performance reasons, the grid of neighbour countries is simplified and modelled with aggregate nodes
 - Interconnectors and their capacities still remain

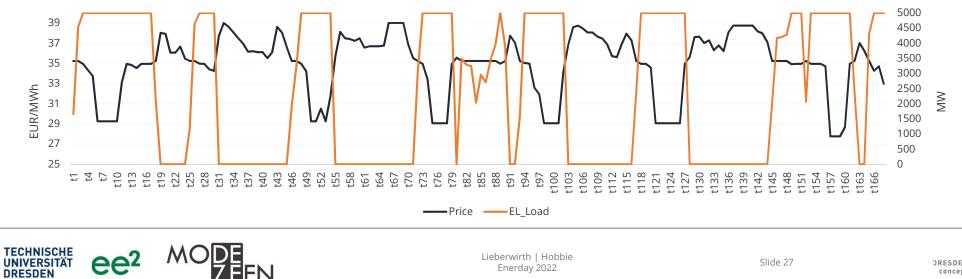
Adjusting the input data towards the target year 2030 is based on TYNDP2020 data



- RES Capacities almost doubled
- No Nuclear power, highly reduced Lignite and coal capacities
- Additional gas-fired power plant capacities are spatially assigned to nodes where coal, lignite and nuclear power is phased out to compensate for the loss of flexible generation capacitites
- Fuel prices, CO2 prices, NTC's and the generation capacities of other countries are taken from ENTSOE TYNDP 2020 scenario "Distributed Energy"
- Transmission Grid expansion is taken from NEP2030 and TYNDP2020

Reference Case (no electrolyzer yet) is showing high curtailment in the north and mainly positive redispatch in load centers for 2030 compared to 2017

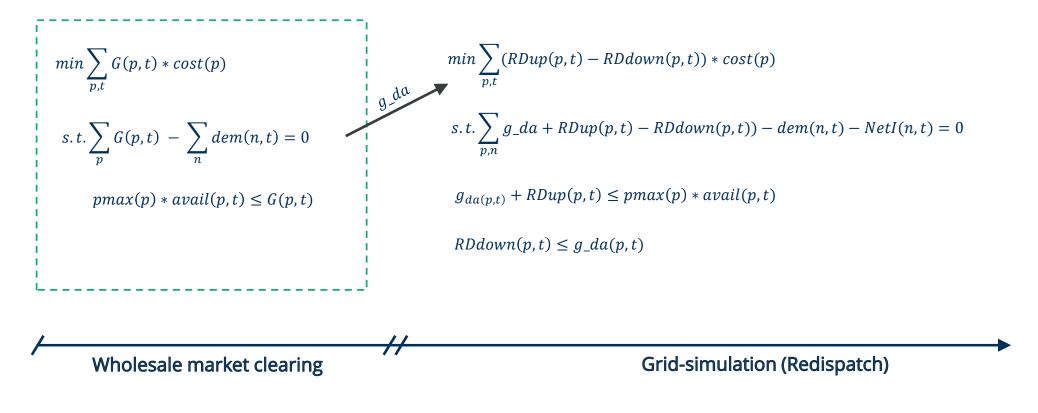
- High volumes of Curtailment at grid nodes with high renewable capacitites and comparable low demand
- Negative Redispatch significantly lower than in 2017
- High volumes of positive Redispatch due to insufficient transmission capacities



TECHNISCHE UNIVERSITÄT DRESDEN

Market Optimization: Results from a ELTRAMOD run with electrolyzers (no explicit scenario)

- exogenous:
 - 5 GW of electrolyzer capacities
 - 28 TWh demand •
- endogenous:
 - Dispatch of electrolyzers is market driven •
 - Infinite hydrogen storage and transport capacitites are assumed (dezentral/zentral) •



Lieberwirth | Hobbie

Enerday 2022

Methodology: Use of a 2-stage Market- and Gridmodelling

Note: All upper-case letters are endogenous variables, lower-case letters parametric model input

Lieberwirth | Hobbie Enerday 2022

