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Background and motivation

Increasing energy system complexity

* One of the most prominent strategies to achieve climate neutrality in the energy system is its
electrification.

 Shifting from fossil fuel-based technologies to electricity-based technologies makes it possible to take
advantage of RES to reduce GHG emissions across all energy sectors but bears the disadvantage of adding
complexity to the system.
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Background and motivation

Bottom-up capacity expansion models

Inputs

Unit commitment

= Demand

= RES deployment

= Power plant fleet

Capacity expansion

= |nvestment options

Scenario framework

=  Techno-economic parameters
= Regulatory restrictions

»

Model

Outputs

Objective function

min ¢ = Cipy + Crixe + Cpar

Restrictions

= Supply-demand balance
= Storage energy balance
=  Upper/lower bounds

= Qperational processes

Objective function

= System costs

= Dispatch

= Fuel consumption

=  (CO, emissions

* |nvestment decisions
= Electricity prices

= CO, certificate prices

European Electricity Market Model - E2M2

=  Fundamental linear (mixed-integer) European electricity market model

= |dentification of normative cost-optimal energy system configurations

*  Simultaneous optimization of investment and operational decisions

= Detailed depiction of conversion, storage, transport and end-use technologies

* The increasing complexity of the energy system is making the underlying mathematical problem of bottom-
up capacity expansion models nearly intractable by drastically increasing the computational effort.
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Method
Multistage optimization approach

* To overcome computational limitations, the optimization of investment and operational decisions can be
carried out hierarchically.

Multistage Optimization Approach  Which is the most suitable temporal and

technological configuration at each stage?
o Stage 1
c = Nl
c S Run 1
s TS . S
N S — = . epe ..
5 2 3 Stage 2 Stage 2 = * How do different simplifications on the
—E o ¥ Run1 Run 2 £ : . ;
g £ T T 2 temporal and technological dimensions affect
= c o
- e Stage3 | | Stage3 | .. the model performance?
g - Run 1 Run 2 v
Model complexity
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Method
Complexity Reduction Efficiency Coefficient (CREC)

* Indicator of the efficiency of model complexity
reduction techniques:

CREC CPLEX ticks Efficiency

Result deviation,,,

CREC,,, = Decrease Low efficienc
™ Complexity reduction,,, Y
Decrease High efficiency
Increase Low inefficiency
* CREC for deviations in investment decisions: Increase High inefficiency

CRECIY — Investment deviation,,,
mr

Complexity reduction,,,
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Detail level of thermal power plants
Method and key findings

Technological dimension 1.0 —r——r——r—Time horizon: 744 howrs .+ MILP approach is

_ Technological dim. 1 i
Thermal power plants S o.aJ;- B Wi ] computationally very
Detail level g ® eoe ] intensive = CPLEX ticks
S 06 | =
8 ] more than 450 times
Features MILP  LPC LPS =
g 041 N higher.
Integral variables X = 1
2 02} -
Maximum generation X X X £ |
Minimum generation X oob—m»u 1 1 1 o g o ; ¢ deviati
Partial efficiencies X X X O'OwJ; S nveft.me? e\;lha o
1 resulting rrom tne
Start-up constraints . X g _ 0.008 i . . g |
and costs 5 ] linearization of thermal
oS5 0006 - .
Load change “ . R ] power plants are minor
traints and cost 5%
constraints and costs O E 3 0.004 | i > <1%.
Minimum operating X g § .
time = 0.002 |- T_% é—
Minimum down time X ooo0 L1+ 11y, glm®

060 02 04 06 08 10 1.2

rel. CPLEX ticks
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Aggregation level of thermal power plants

Method and key findings

Technological dimension

Thermal power plants

Aggregation level

Aggregation

Definition
level
Dis Disaggregation in typical power
plant sizes
. Aggregation based on
Vin5 S .
commissioning year in 5-year steps
Vinis Aggregation based on

commissioning year in 15-year steps

Aggregation based on primary
Agg energy and technology type (e.g.,
CCGT, OCGT, ST, Offshore, Onshore)
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CREC

(Investment deviation vs.

Complexity reduction)

24
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0.8

Investment deviation [%)]
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0.0

0.024

0.020

0.016

0.012

0.008

0.004

0.000

Time horizon: 8760 hours

2.0

- 1 1 T T
<] Technological dim.
B LPC-Dis

@ LPC-Vin5 1
[> LPC-Vin15 .
4 LPC-Agg J
1 1 L\B 1 1 ‘ | 1 | -
1 N | 1 | | |
< i
Tg -
3 =
o
2 -
Lo > o 1 g 1 . 1 . g
00 02 04 06 08 1.0

rel. CPLEX ticks
(Complexity)

* By aggregating existing
thermal power plants
with similar techno-
economic
characteristics, it is
possible to achieve very
low CREC values.
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Combination of temporal and technological simplifications related to thermal power plants
Method and key findings

Temporal dimension § ey —Time horizon: 8760 hours * Not considering start-up or load change

. — Technological dim. T Idim. 7
Segmentation s, ec "LDPfgj\j?ns'm Temporal dim. ] processes for thermal power plants can
Number of yearly S :tﬁﬁ)({;;s S e increase CPLEX ticks = By increasing
: 23 ——LPS-Vin5 7 2190 - .
time steps 3 A 1460 l tightness.
8760 5 .
E 1
6570 3
4350 g ] * The combination of low aggregation levels
2190 in both model dimensions shows lower
0.06 . .
- | CREC values, than larger aggregations in

0.04 - only one dimension.

CREC
(Investment deviation vs.
Complexity reduction)
o
o
N
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Combination of temporal and technological simplifications related to demand response (DR)

Method and key findings

Technological dimension

Demand response

Detail level
Detail .
Definition
level
Formulation as
compensation variables
DRC . .
with two time-related
indices [1]
Formulation as fictitious
DRS

storage units [2]
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CREC
(Investment deviation vs.

I ! I ! 1 I
Technological dim.
LPC-Dis-DRC O
——LPC-Dis-DRS O
&

N

VAN

Investment deviation [%]
[o2]
1

8760
6570
4380
2190
1460

Time horizon: 8760 hours

Temporal dim. |

0.10
0.05
0.00

-0.05

Complexity reduction)

-0.10

-0.15 I 1 | 1 | 1 1 L 1

xa|dwoos

paonpal

g

0 2 4 6 8

rel. CPLEX ticks
(Complexity)

* The model performance is more

robust to reductions in temporal
resolution if DR technologies are
considered as fictitious storage units.

When decreasing the temporal
resolution, the formulation as
compensation variables:

* Greatly overestimates their
flexibility.

* Increases tightness.

The formulation as fictitious storage
units also increases tightness but has
the opposite effect on the flexibility.
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Conclusions and outlook

Conclusions

* |t is not possible to consider MILP simultaneously to long-term investment decisions, because such an approach is
computationally very intensive.

* The tightness of the problem and not only its compactness (size) determine its solving time.
* To further decrease the computational effort, neglecting start-up and load change processes should be avoided.

* Low aggregation levels in multiple model dimensions show lower investment deviations and higher CPLEX tick reductions,
than larger aggregations in only one dimension.

* The impact of simplifying a certain model dimension is highly dependent on the configuration of the other dimensions, e.g.:

* Temporal resolution vs. Formulation of demand response technologies
Outlook
* Establishment of a suitable configuration of the multistage approach based on this comprehensive analysis
* Comparison of the multistage approach with established methods, such as a myopic foresight

* Application of the multistage approach to facilitate the linkage with other energy models, e.g., with an agent-based model
- ERAFlex Il
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