

University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use

Background and motivation

Increasing energy system complexity

- One of the **most prominent strategies** to achieve **climate neutrality** in the energy system is its **electrification**.
- Shifting from fossil fuel-based technologies to electricity-based technologies makes it possible to take advantage of RES to reduce GHG emissions across all energy sectors but bears the disadvantage of adding complexity to the system.

Background and motivation

Bottom-up capacity expansion models

European Electricity Market Model – E2M2

- Fundamental linear (mixed-integer) European electricity market model
- Identification of normative cost-optimal energy system configurations
- Simultaneous optimization of investment and operational decisions
- Detailed depiction of conversion, storage, transport and end-use technologies
- The increasing complexity of the energy system is making the underlying mathematical problem of bottomup capacity expansion models nearly intractable by drastically increasing the computational effort.

Method

Multistage optimization approach

• To overcome computational limitations, the optimization of investment and operational decisions can be carried out **hierarchically**.

- Which is the most suitable temporal and technological configuration at each stage?
- How do different simplifications on the temporal and technological dimensions affect the model performance?

Method

Complexity Reduction Efficiency Coefficient (CREC)

• Indicator of the efficiency of model complexity reduction techniques:

 $CREC_{mr} = \frac{Result \ deviation_{mr}}{Complexity \ reduction_{mr}}$

• CREC for deviations in investment decisions:

 $CREC_{mr}^{inv} = \frac{Investment\ deviation_{mr}}{Complexity\ reduction_{mr}}$

CREC	CPLEX ticks	Efficiency
++	Decrease	Low efficiency
+	Decrease	High efficiency
-	Increase	Low inefficiency
	Increase	High inefficiency

Detail level of thermal power plants

Method and key findings

Technological dimension				
Thermal power plants				
Detail	level			
Features	MILP	LPC	LPS	
Integral variables	Х			
Maximum generation	Х	Х	Х	
Minimum generation	Х			
Partial efficiencies	Х	Х	Х	
Start-up constraints and costs	Х	Х		
Load change constraints and costs	Х	Х		
Minimum operating time	Х			
Minimum down time	Х			

 MILP approach is computationally very intensive → CPLEX ticks more than 450 times higher.

 Investment deviations resulting from the linearization of thermal power plants are minor → <1%.

IER University of Stuttgart

Aggregation level of thermal power plants

Method and key findings

By aggregating existing thermal power plants with similar technoeconomic characteristics, it is possible to achieve very low CREC values.

Combination of temporal and technological simplifications related to thermal power plants

Method and key findings

- Not considering start-up or load change processes for thermal power plants can increase CPLEX ticks \rightarrow By increasing tightness.
- The combination of low aggregation levels in both model dimensions shows lower CREC values, than larger aggregations in only one dimension.

Combination of temporal and technological simplifications related to demand response (DR)

Method and key findings

- The model performance is more robust to reductions in temporal resolution if DR technologies are considered as fictitious storage units.
- When decreasing the temporal resolution, the formulation as compensation variables:
 - Greatly overestimates their flexibility.
 - Increases tightness.
- The formulation as fictitious storage units also increases tightness but has the opposite effect on the flexibility.

9

Conclusions and outlook

Conclusions

- It is not possible to consider MILP simultaneously to long-term investment decisions, because such an approach is computationally very intensive.
- The tightness of the problem and not only its compactness (size) determine its solving time.
 - To further decrease the computational effort, neglecting start-up and load change processes should be avoided.
- Low aggregation levels in multiple model dimensions show lower investment deviations and higher CPLEX tick reductions, than larger aggregations in only one dimension.
- The impact of simplifying a certain model dimension is highly dependent on the configuration of the other dimensions, e.g.:
 - Temporal resolution vs. Formulation of demand response technologies

Outlook

- Establishment of a suitable configuration of the multistage approach based on this comprehensive analysis
- Comparison of the multistage approach with established methods, such as a myopic foresight
- Application of the multistage approach to facilitate the linkage with other energy models, e.g., with an agent-based model
 → ERAFlex II

Literature

[1] A. Zerrahn, W.-P. Schill, *On the representation of demand-side management in power system models*, Energy 84 (2015) 840–845. https://doi.org/10.1016/j.energy.2015.03.037.

[2] M. Steurer, *Analyse von Demand Side Integration im Hinblick auf eine effiziente und umweltfreundliche Energieversorgung*, Ph.D. thesis, University of Stuttgart, Germany (2017). http://dx.doi.org/10.18419/opus-9181.

University of Stuttgart *IER* Institute for Energy Economics and Rational Energy Use

Thank you!

Laura Torralba Díaz

e-mail	laura.torralba-diaz@ier.uni-stuttgart.de
phone	+49 (0) 711 685-60900
fax	+49 (0) 711 685-87873

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung (IER) Energiemärkte und Intelligente Systeme (EI) Heßbrühlstraße 49a, 70565 Stuttgart