

Network Expansion to Mitigate Market Power - How Increased Integration Promotes Welfare

9th ENERDAY at TU Dresden April 11, 2014

Alexander Zerrahn & Daniel Huppmann

European Commission, 2012

Network expansion from a social welfare perspective

An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
- \rightarrow Pure efficiency gains

European Commission, 2012

Network expansion from a social welfare perspective

An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
- \rightarrow Pure efficiency gains

Network expansion from a political perspective

Since mid-1990s, creation of an Internal Energy Market is envisaged as political goal:

- Unbundling of generation, network operation, and retailing
- Increased competition
- \rightarrow Integration across national borders

European Commission, 2012

Network expansion from a social welfare perspective

An analysis of the European power exchange EPEX detects

- Without international congestion, welfare would have been higher by 250 million Euro in 2013
- \rightarrow Pure efficiency gains

Network expansion from a political perspective

Since mid-1990s, creation of an Internal Energy Market is envisaged as political goal:

- Unbundling of generation, network operation, and retailing
- Increased competition
- \rightarrow Integration across national borders

Electricity generation in Europe remains concentrated

Market share of the biggest generator (EU 2012, Eurostat 2012)

- In ten Member States above 70%
- \rightarrow Can further integration mitigate this potential for market power exertion?

European Commission, 2012

Research Agenda

What we want to answer

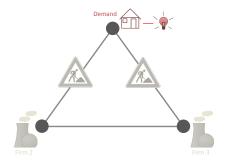
Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

 \rightarrow We develop a three-stage model

Network Expansion, Market Power, and Welfare ${\circ} \bullet$

The Three-Stage Model

Results for a Three-Node Network


Research Agenda

What we want to answer

Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

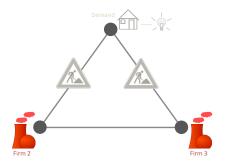
 \rightarrow We develop a three-stage model

Stage III: ISO clears market

Network Expansion, Market Power, and Welfare ${\circ} \bullet$

The Three-Stage Model 00 Results for a Three-Node Network

Research Agenda


What we want to answer

Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

 \rightarrow We develop a three-stage model

Stage II: Firms in Cournot competition

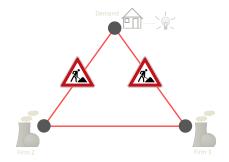
Stage III: ISO clears market

Network Expansion, Market Power, and Welfare $\circ \bullet$

The Three-Stage Model 00 Results for a Three-Node Network

Research Agenda

What we want to answer

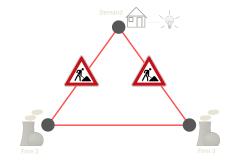

Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

ightarrow We develop a three-stage model

Stage I: Planner expands network

Stage II: Firms in Cournot competition

Stage III: ISO clears market



Research Agenda

What we want to answer

Does the expansion of interconnector capacities yield welfare gains through reduced potential to exert market power?

- ightarrow We develop a three-stage model
- Stage I: Planner expands network
- Stage II: Firms in Cournot competition
- Stage III: ISO clears market

Our contributions

I) POLICY

Endogenous tradeoff between costs and welfare-effects of network expansion

II) THEORY

Identification of strategic effects from literature (Borenstein 2000, Pozo 2013)

III) NUMERICS

Extension of new method to solve this class of problems (Ruiz et al, 2012)

The First Stage Selects the Best Equilibrium

Model structure

Stage	Timing	Players and decisions		
	Network expansion	Benevolent social planner		
		Investment in network expansion		
		Strategic generators		
	Spot market	Generation at each node		
III		Independent System Operator (ISO)		
		Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits		

Spot market: Equilibrium Problem under Equilibrium Constraints

- \rightarrow Stage II: Strategic firms maximize profits (EP)
- \rightarrow Stage III: subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures

The First Stage Selects the Best Equilibrium

Model structure

Stage	Timing	Players and decisions		
1	Network expansion	Benevolent social planner		
i		Investment in network expansion		
11		Strategic generators		
	Spot market	Generation at each node		
111		Independent System Operator (ISO)		
		Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits		

Spot market: Equilibrium Problem under Equilibrium Constraints

- \rightarrow Stage II: Strategic firms maximize profits (EP)
- \rightarrow Stage III: subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures **Solution:** Derive equivalent representation w/o complementarity (Ruiz et al, 2012)

Result: set of stationary points

The First Stage Selects the Best Equilibrium

Model structure

Stage	Timing	Players and decisions		
1	Network expansion	Benevolent social planner		
i		Investment in network expansion		
11		Strategic generators		
	Spot market	Generation at each node		
111		Independent System Operator (ISO)		
		Dispatch of competitive fringe, load, nodal prices, network flows within capacity limits		

Spot market: Equilibrium Problem under Equilibrium Constraints

- \rightarrow Stage II: Strategic firms maximize profits (EP)
- \rightarrow Stage III: subject to equilibrium spot market clearing (EC)

Problem: Equilibrium constraints do not allow for standard procedures **Solution:** Derive equivalent representation w/o complementarity (Ruiz et al, 2012)

Result: set of stationary points

Stage I serves as selection device

- \rightarrow Welfare-maximizing planner expands network
- \rightarrow Selects the best out of all feasible solutions

Network Expansion, Market Power, and Welfare

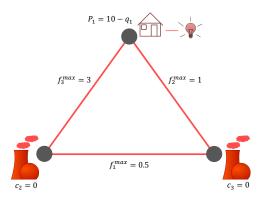
Results for a Three-Node Network

A Three-Node Network to Illustrate the Model

- Simple network to demonstrate all prevailing strategic effects
- Assumption of nodal prices

Topology

 \rightarrow Three nodes

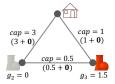

 \rightarrow Three lines

Generation

- \rightarrow Two strategic plants
- \rightarrow Zero marginal costs
- \rightarrow No competitive fringe

Demand

- \rightarrow Linear elastic demand
- \rightarrow Located in one node



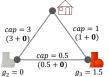
Pictograms under public domain free licence

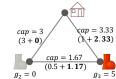
Network Expansion Can Increase Welfare

We calculate a benchmark without expansion and three solution candidates

Benchmark: No Expansion

Welfare: 13.88


Passive-aggressive equilibrium

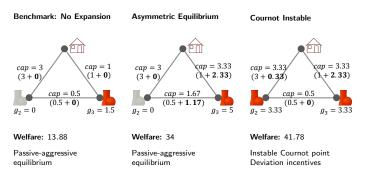

Network Expansion Can Increase Welfare

We calculate a benchmark without expansion and three solution candidates

Benchmark: No Expansion

Asymmetric Equilibrium

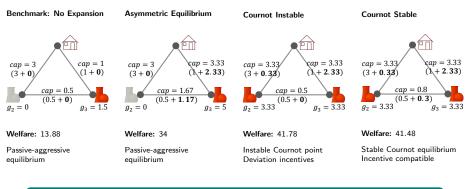
Welfare: 13.88 Passive-aggressive


equilibrium

Welfare: 34

Passive-aggressive equilibrium

Network Expansion Can Increase Welfare


We calculate a benchmark without expansion and three solution candidates

Results for a Three-Node Network $\bullet \circ \circ$

Network Expansion Can Increase Welfare

We calculate a benchmark without expansion and three solution candidates

Result I

- Network expansion can increase welfare
- Focus on congested lines only can yield suboptimal outcomes

Consequences for the Distribution of Welfare Gains

Who wins? Who loses?

Compare the no expansion benchmark with the...

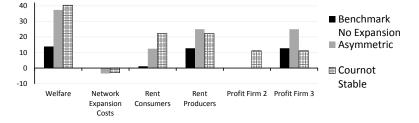
Asymmetric equilibrium

- \rightarrow Producers & consumers gain
- \rightarrow Aggressive firm remains in its position

Network Expansion, Market Power, and Welfare ∞

Consequences for the Distribution of Welfare Gains

Who wins? Who loses?


Compare the no expansion benchmark with the...

Asymmetric equilibrium

- \rightarrow Producers & consumers gain
- \rightarrow Aggressive firm remains in its position

Cournot Stable

- \rightarrow Producers & consumers gain
- \rightarrow Previously aggressive firm loses
- \rightarrow Previously passive firm gains
- \rightarrow Consumers gains more than producers

Result II

Network expansion can increase welfare, and entails a relative shift of rents from producers to consumers Network Expansion, Market Power, and Welfare

What Happens if Strategic Behaviour is Neglected...

Assume all firms competitive and determine optimal network expansion

			Competitive market	Strategic firms (C)
No expansion	Welfare		21.88	13.88
	Welfare		44.5	41.48
	Iine 1 Network capacity (initial + expansion)	line 1	0.5	0.8
Expansion		line 1	(0.5 + 0)	(0.5 + 0.3)
		line 2	4.75	3.33
			(1 + 3.75)	(1 + 2.33)
		11 D	4.25	3.33
		line 3	(3 + 1.25)	(3 + 0.33)
	Total expansion		<u>5</u>	2.97

In the optimum

 \rightarrow More expansion, less welfare gain

Network Expansion, Market Power, and Welfare 00

What Happens if Strategic Behaviour is Neglected...

Assume all firms competitive and determine optimal network expansion

			Competitive market	Strategic firms (C)
No expansion	Welfare		21.88	13.88
	Welfare		44.5	41.48
	Iine 1 Network capacity (initial + expansion) Iine 2	line 1	0.5	0.8
			(0.5 + 0)	(0.5 + 0.3)
Europeian		line 2	4.75	3.33
Expansion			(1 + 3.75)	(1 + 2.33)
		4.25	3.33	
		line 3	(3 + 1.25)	(3 + 0.33)
	Total expansion		5	2.97

In the optimum

 \rightarrow More expansion, less welfare gain

The counterfactual

- \rightarrow Network does not admit equilibrium solution
- $\rightarrow \ldots$ interpretation?

Result III

- Network expansion can mitigate detrimental effect of market power
- Neglecting strategic behavior can evoke configurations not admitting equilibria

Thank you very much for the attention

DIW BERLIN

DIW Berlin – Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Literature

- Borenstein, S., J. Bushnell, and S. Stoft. The Competitive Effects of Transmission Capacity in a Deregulated Electricity Industry. The RAND Journal of Economics, 31(2):294-325, Summer 2000
- EPEX Spot. Social Welfare Report 01-12/2013, 12 2013
- European Commission. Energy, transport and environment Indicators 2012 edition. Publications Office of the European Union, 2012
- European Commission. Making the internal energy market work. Communication (2012) 663 final, November 2012
- Neuhoff, K., J. Barquin, M.G. Boots, A. Ehrenmann, B.F. Hobbs, F.A.M Rijkers, and M. Vazquez. Network-constrained Cournot models of liberalized electricity markets: the devil is in the details. Energy Economics, 27:495-525, 2005
- Pozo, D., J. Contreras, and E. Sauma. If you build it, he will come: Anticipative power transmission planning. Energy Economics, 36:135-146, 2013
- Ruiz, C., A.J. Conejo, and Y. Smeers. Equilibria in an Oligopolistic Electricity Pool With Stepwise Offer Curves. IEEE Transactions on Power Systems, 27(2):752-761, 2012

Pictograms (power plant, house, light bulb) under public domain free licence (Wikimedia Commons)

Network Expansion, Market Power, and Welfare

Results for a Three-Node Network

Backup - Solution of the EPEC

Stage II: Equilibrium Problem

Strategic firms maximize profits in Cournot competition

$$orall i, \max_{g_i} \Pi(g_i, g_{-i})$$
 s.t. $0 \leq g_i \leq g_i^{max}$ (κ)

subject to market clearing by the ISO

Stage III; Equilibrium Constraints

$$\begin{array}{ll} \max \ \textit{Welfare} \left(g,d,\delta\right) \ \text{s.t.} \ \textit{Nodal Balance} \left(g,d,\delta\right) = 0 \quad (p_n) \quad \forall n \\ Feasible \ \textit{Flows} \left(\delta\right) \leq 0 \quad (\mu_l) \quad \forall l \end{array}$$

Procedure:

Transform stage III problem into equilibrium constraints we can work with

$$\begin{array}{l} \frac{\partial \textit{Welfare}}{\partial g} + p_n \frac{\partial \textit{Nodal Balance}}{\partial g} \geq 0 \perp g \geq 0\\ \frac{\partial \textit{Welfare}}{\partial d} + p_n \frac{\partial \textit{Nodal Balance}}{\partial d} \geq 0 \perp d \geq 0\\ \frac{\partial \textit{Welfare}}{\partial \delta} + p_n \frac{\partial \textit{Nodal Balance}}{\partial \delta} + \mu \frac{\partial \textit{Feasible Flows}}{\partial \delta} = 0 \perp \delta\\ \textbf{Nodal Balance} \left(g, d, \delta\right) = 0 \perp p_n \quad \forall n\\ -\textit{Feasible Flows} \left(\delta\right) \geq 0 \perp \mu \geq 0 \end{array}$$

Backup - Solution of the EPEC

Spot market: EPEC

$$\begin{aligned} \forall i, \ \max_{g_i} \Pi\left(g_i, g_{-i}\right) & \text{s.t.} \ 0 \leq g_i \leq g_i^{max} \quad (\kappa), \\ & \frac{\partial \text{Welfare}}{\partial g} + p_n \frac{\partial \text{Nodal Balance}}{\partial g} \geq 0 \perp g \geq 0 \\ & \frac{\partial \text{Welfare}}{\partial d} + p_n \frac{\partial \text{Nodal Balance}}{\partial d} \geq 0 \perp d \geq 0 \\ & \frac{\partial \text{Welfare}}{\partial \delta} + p_n \frac{\partial \text{Nodal Balance}}{\partial \delta} + \mu \frac{\partial \text{Feasible Flows}}{\partial \delta} = 0 \perp \delta \\ & \text{Nodal Balance} \left(g, d, \delta\right) = 0 \perp p_n \quad \forall n \\ & -\text{Feasible Flows} \left(\delta\right) \geq 0 \perp \mu \geq 0 \end{aligned}$$

Here's the problem:

- Stage II equilibrium problem subject to an MCP
- i.e. to nonconvex equilibrium constraints
- Necessary conditions cannot be derived explicitly

Backup - Solution of the EPEC

Reformulate Equilibrium Constraints such that bilinearities vanish

- Set up dual problem for stage III
- By definition, solution of the dual problem is no larger than solution of the primal
- The reverse inequality must hold as constraint
- \rightarrow All vectors fulfilling the following constraints

 $\begin{array}{ll} \textit{Nodal Balance}\left(g,d,\delta\right)=0 & (p_n) & \forall n\\ \textit{Feasible Flows}\left(\delta\right)\leq0 & (\mu_l) & \forall l\\ \textit{Dual Constraints}\leq0 & (\nu)\\ \textit{Primal}(g,d,\delta)-\textit{Dual}(p,\mu)\leq0 & (\xi) \end{array}$

describe the stage III equilibrium constraints without bilinearities

- The first two (in)equalities comprise all feasible vectors for the primal problem
- The third inequality comprises all feasible vectors for the dual problem
- The *primal-dual* inequality ensures optimality
- \rightarrow Solution space for the strategic firms' optimization problem