

Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

Development of transmission and distribution grid charges and of their regional differences in Germany

ENERDAY, Dresden, April 11, 2014

Fabian Hinz

Agenda

ENERDAY: Development of grid charges

- **1** Motivation & model structure
- **2** Transmission & distribution grid cost
- **3** Grid charge estimation

┝┝┝

Grid charges have increased in recent years – strong regional differences exist

Average grid charges 2006 to 2013, regional distribution of household charges 2013

Source: Bundesnetzagentur, ene't 1) CAGR: Compound Annual Growth Rate

Approved measures of network development plans account to 32.5 bn. EUR until 2023

Assumptions for on- and offshore transmission grid extensions

by all 4 TSOs

Offshore costs are shared

Additional annual replacement investments of 190 mio. EUR considered

Source: Network development plans NEP2013, O-NEP 2013 (2. Entwurf), Bundesnetzagentur Monitoringreport 2013, Approval NEP / O-NEP

TU Dresden, Lehrstuhl für Energiewirtschaft, Fabian Hinz

Grid charges are estimated using models for TSOs, DSOs and demographic development

Model-based grid charge estimation approach

Transmission and distribution grid costs modelled separately starting from estimated revenue limits

Model-based grid cost estimation approach

Source: EE² 1) Including depreciation of assets

Agenda

EE²

ENERDAY: Development of grid charges

- **1** Motivation & model structure
- **2** Transmission & distribution grid cost
- **3** Grid charge estimation

Transmission grid cost with high growth rates – highest increase in Tennet control area expected

EE²

Estimation of transmission grid cost development & cost drivers, 2013 to 2023, in mio. EUR

Source: EE² 1) Including replacement investments

Distribution grid investments lead to an average annual cost increase of 1.6%

Distribution grid investments and resulting cost increases 2013 to 2023, in EUR

Source: dena distribution grid study, EE²

Agenda

EE²

ENERDAY: Development of grid charges

- **1** Motivation & model structure
- **2** Transmission & distribution grid cost
- **3** Grid charge estimation

Calculations predict increased grid charges in the Eastern and Northern part of Germany

Grid charges household and commercial customers, 2013 and 2023, in ct/kWh

In certain regions demographic and cost increase effect exacerbate each other

- Demographic and cost increase effect exacerbate each other e.g. in rural areas of Mecklenburg-Vorpommern, Thüringen, Sachsen-Anhalt and Sachsen
- A partly compensation can be expected in the metropolitan areas as well as in parts of Niedersachsen and Baden-Württemberg

A uniform national grid charge would disburden customers especially in the Eastern part of Germany

Regional effects of a uniform national grid charge, in ct/kWh

Regional price increases and decreases resulting from a uniform grid charge are asymmetric

Per capita cost increase / decrease resulting from a uniform grid charge, in EUR

A uniform grid charge could distribute the costs of the energy turnaround in a fairer way

- Considerable cost increases in certain distribution grids
- Cost increase unequally distributed throughout the country

Conclusions

- In certain regions strong network cost increases and a negative demographic development reinforce each other
- Considerable disburden in Eastern and Northern Germany through uniform grid charge
- Distribution grid is largest lever for alignment of grid charges