

Sector Coupling

An energy economic perspective

Agenda

0	Company Presentation 50Hertz
1	Definition and Motivation for Sector Coupling
2	Potential for Sector Coupling
3	Challenges for the Grid Infrastructure
4	Current Barriers (and Solutions)
5	Summary

2017

50Hertz at a glance

Source: 50Hertz; *preliminary data; as of 06/03/2018

	(share Germany)	
Grid area	109,589 km² (~31%)	
Length of lines	10,200 km (~30 %)	
Max. load	~ 16 GW (~20 %)	
Power consumption (based on electricity supplied to end-consumers in acc. with Renewables Energy Law "EEG")	~ 96 TWh (~20 %)	
Installed capacities - of which Renewables - of which Wind	54,069 MW (~26%)* 31,177 MW (~30%)* 18,556 MW (~34%)*	
RES share in power consumption	53.4 %	
urnover9.9 bn. €of which Grid1.3 bn. €		
Employees	1,043	

Feed-in of renewable energies within the 50Hertz grid area

50Hertz grid area: development of RES

feed-in (TWh)

50Hertz grid area: composition of RES feed-in (2017, in %)

Source: 50Hertz; *preliminary data, as of 03/01/2018

The power system in the 50Hertz grid area

Source: 50Hertz; as of 31/12/2017

Agenda

0	Company Presentation 50Hertz
1	Definition and Motivation for Sector Coupling
2	Potential for Sector Coupling
3	Challenges for the Grid Infrastructure
4	Current Barriers (and Solutions)
5	Summary

Definition Sector Coupling

Sector coupling characterizes an optimized application of energy converters and storages with the objective of an efficient **system integration of RES-E** and **decarbonisation** of other sectors.¹

Chart inspired by Fraunhofer IWES

¹ Definition according to Sterner und Stadler (2017)

Sector coupling is an option to reduce GHG in traffic and household sector

Greenhouse gas emissions (CO₂ and others) in Mil. t. CO₂-equivalents

In recent years GHG reduction in household and transport sector were unsuccessful. Sector Coupling may provide a solution.

Source: Umweltbundesamt (2018); Klimaschutzplan der Bundesregierung (2016)

Rising share of RES leads to new requirements and challenges

- RES as "fuel-saving technology"
- Development of grid infrastructure necessary in order to meet new transport demands (due to new areas of generation) and as source of flexibility
- Sector Coupling as option for temporary excess electricity

RES have evolved from a niche to a dominant source of energy in the 50Hertz grid area leading to new challenges and requirements for the grid.

Energy and climate protection are corner stones of the German Coalition Agreement 2018

	CO ₂ reduction targets:	min 55 % until 2030; min 80 % until 2050, Measures to reach the 40 % target until 2020 Commission for coal phase out (<i>Strukturwandel</i>)
*	Renewable energies:	65 % until 2030 80 % until 2050 Synchronisation with grid expansion
***	Special tender:	4 GW Wind-Onshore 4 GW PV additional Offshore contribution
	Grids:	Create acceptance and accelerate grid expansion
	Sector Coupling:	National battery production R&D on synthetic fuels and hydrogen synthesis Promote Power-to-Heat
Source: Coal	ition Agreement 2018	

Agenda

0	Company Presentation 50Hertz
1	Definition and Motivation for Sector Coupling
2	Potential for Sector Coupling
3	Challenges for the Grid Infrastructure
4	Current Barriers (and Solutions)
5	Summary

Residual load declines from 2017 to 2030 but peak load increases

German annual load duration curve 2017

... and projection for 2030

* Load data my contain errors

The share of hours per year with a RES-E oversupply increases till 2030 and could provide a potential for sector coupling.

Source: Extrapolation by German TSOs (2018); Agora Energiewende (2018)

An increasing number of low spot market prices may incentivize sector coupling

Number and value of Day Ahead spot market prices in Germany 2017

Potential II

3,7 TWh of RES-E Curtailment were conducted in Germany in 2016

"Use not loose" of RES-E production could replace 100 MW capacity in 2016 in 50Hertz grid area

Annual load duration curve for RES-E curtailment* 2016 in MW

* conducted by 50Hertz, cut at 1000 MW

High uncertainties for both intertemporal and regional distribution of RES-E over capacities may reduce the economic potential.

Source: 50Hertz

Agenda

0	Company Presentation 50Hertz
1	Definition and Motivation for Sector Coupling
2	Potential for Sector Coupling
3	Challenges for the Grid Infrastructure
4	Current Barriers (and Solutions)
5	Summary

Sector coupling provides short term potential for electrification in transport and residential sector

Final energy consumption by sectors, sources and technologies in Germany in TWh

Challenge I

HP and EV increase power consumption only marginal until 2035

Power consumption* in Germany in TWh

* excluding transmission losses Effect of sector coupling 10 Mio. EV 2.9 Mio. HP 29 Industry 132 Services 223 228 106 Households Others Heat pumps e-Mobility 149 144 Source: Netzentwicklungsplan 2035B (2017) Source: Umweltbundesamt (2017) 2015 5524 TWh 2035 5 531 TWh

The expected impact on total power consumption by sector couplings remains low, even with high assumptions for EV and HP.

HP and EV increase Peak Demand – Is there enough Peak Power / Flexibility in 2035?

Under the condition of smart HP and charging solutions for EV peak load may be met by the installed controllable capacity.

Predominant challenge for increased load arises in the distribution grid

Transmission Grid	380 kV	220 kV	Technologies
	35,000 km	TSO	Sector Coupling
High Voltage Grid	110 kV	60 kV	
	95,000 km	DSO	"KWK upgrade"
Medium Voltage Grid	30 kV –	1 kV	Power-to-Fuel
	510,000 km	DSO	Highway
Low Voltage Grid	400 V –	230 V	
	1,150,000 km	DSO	
Rural LNT Grid	Municipal Grid	LNT	
LNT: local network transformer	LNT	K T	L→ 6 7 7

- Congestions primarily caused in 110 kV to 380 kV grids by wind power feed in
- Planned grid extension targets congestions

- Technologies of sector coupling are expected to be connected to the medium and low voltage grid and may cause additional congestions
 - Rural grids are further developed due to recent PV installations but less meshed than municipal grids

Estimation of grid infrastructure limits with no optimised charging patterns (worst case)

Maximum load for 228 households in kW with different penetration rates for EV

With simultaneous charging at 22kW the local transformer is limited to 5 EVs (2% penetration) with no optimised charging algorithm in place.

Estimation of grid infrastructure limits with idealised charging optimisation (best case)

Daily load profile for 228 households in kW with different penetration rates for EV

A 100% idealised charging optimisation allows each household to use 4 EVs. However, this will be strongly limited by typical charging patterns.

Direct electrification of the transport sector uses RES electricity most efficiently

Direct electrification of the transport sector allows domestic use of RES-E capacities. PtG production may be more economically efficient overseas.

An increased total power consumption is expected for Germany in 2050

High estimates for national PtG production capacities increase the electricity demand significantly. Syn-fuel imports could reduce that and safe costs.

Source: ISI (2018); Dena (2017)

Agenda

0	Company Presentation 50Hertz
1	Definition and Motivation for Sector Coupling
2	Potential for Sector Coupling
3	Challenges for the Grid Infrastructure
4	Current Barriers (and Solutions)
5	Summary

The financial burden for electricity reduces the potential for sector coupling on domestic level

Elements of the energy bill for households* in 2017

* Consumption of 2500 - 5000 kWh (Electricity) und 5500 - 55.500 kWh (Gas)

25 ct/kWh

Introduction price floor or carbon tax for CO₂

- Introduction of a CO₂-price floor or a CO₂-tax of significant scale (> 75 €/t CO₂) would increase market prices
- In consequence: market premium payments decrease revenues from direct marketing increase
- EEG-surcharge decreases significantly
- Price distortions caused by EEG-surcharge would decrease

Option 2

Collection of EEG surcharge on other sources

Comparison of the two options

	Criteria	Option 1: CO ₂ -tax/ CO ₂ -price floor	Option 2: Distribution on other energy sources
	Reduction of inefficient incentives for self consumption	in part	depends on implementation
Energy		tax: yes	
Economics	Reduction of barriers for sector coupling	floor: no	
	Introduction of new disincentives	if implemented only nationally	
Politico	Overall feasibility	internationally: difficult	challenging
Politics	Fair cost distribution	depends on implementation	
Adminis- tration	Implementation		challenging

Ranking:

positive

depends on implementation

Agenda

0	Company Presentation 50Hertz
1	Definition and Motivation for Sector Coupling
2	Potential for Sector Coupling
3	Challenges for the Grid Infrastructure
4	Current Barriers (and Solutions)
5	Summary

Sector Coupling as an Enabler of Full Decarbonisation

- For reaching 2050 climate goals, the different sectors of the energy system have to be integrated much further than today
 This will have to be prepared in the years to come
- Sector coupling could also address grid congestion issues; however, grid extension is still necessary
 "Use not loose" with Power-to-Heat could reduce RES-E curtailment. However, economics are challenging (even if focusing on the macroeconomic view). Grid extension remains the cheapest option, as long as there is acceptance

 Charging of electric vehicles does not necessarily lead to congestion in low voltage grids

But there will for sure be severe congestion if EV are charged in an uncoordinated manner or are controlled by wholesale prices only

 Revision of EEG surcharge and other regulated cost necessary Introduction of fiscal elements and expansion of EEG-surcharge on other energy sources can alleviate current distortions

Thank you for your attention!

Dr. Johannes Henkel

50Hertz Transmission GmbH Heidestraße 2 10557 Berlin

030 - 5150 - 2652 johannes.henkel@50hertz.com

www.50hertz.com

Dresden, 27.04.2018