Optimal Pricing, Subsidies and Solar Panels A two-sided market approach

Raúl Bajo-Buenestado

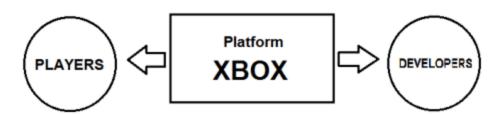
Department of Economics, University of Navarra

Center for Energy Studies, Baker Institute for Public Policy

12th ENERDAY, TU Dresden Dresden, April 27th 2018

Overview

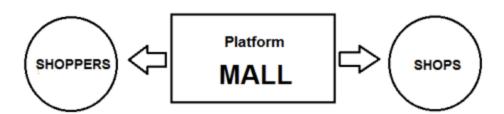
- Introduction
- 2 Model Setup
- 3 Equilibrium in the absence of environmental policies
- 4 Equilibrium in the presence of environmental policies
- 5 Conclusions


Main features of two-sided markets

- a) Two groups of end-users
- b) Platform enables interaction between the groups of end-users
- c) The groups of end-users provide each other network benefits

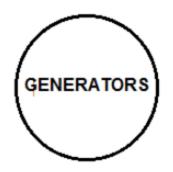
Main features of two-sided markets

- a) Two groups of end-users
- b) Platform enables interaction between the groups of end-users
- c) The groups of end-users provide each other network benefits

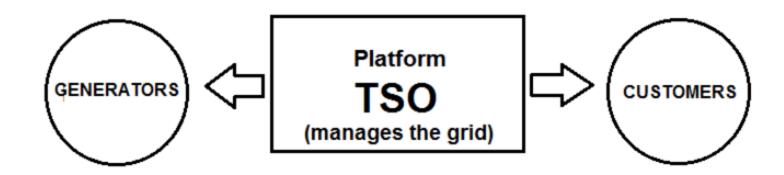

Example: videogames

Main features of two-sided markets

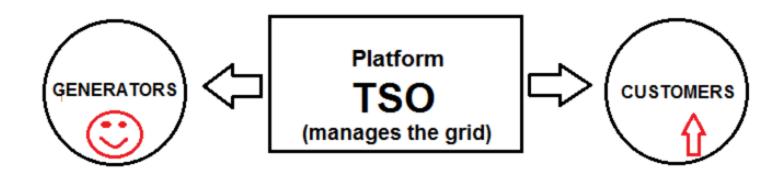
- a) Two groups of end-users
- b) Platform enables interaction between the groups of end-users
- c) The groups of end-users provide each other network benefits

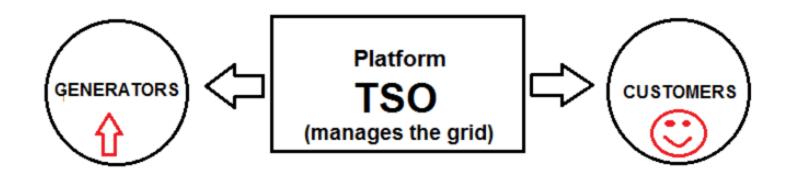

Example: shopping malls

Electricity markets can be seen as a two-sided market


Weiller and Pollitt (2013) already suggested this idea

- Weiller and Pollitt (2013) already suggested this idea
- a) Two groups of end-users




- Weiller and Pollitt (2013) already suggested this idea
- b) Platform enables interaction between end-users

- Weiller and Pollitt (2013) already suggested this idea
- c) End-users provide each other network benefits

- Weiller and Pollitt (2013) already suggested this idea
- c) End-users provide each other network benefits

Electricity Markets as Two-sided Markets

- Additional, new feature: "on-site" (distributed) generation
 - Due to technology innovations
- A new kind of "hybrid" end-users in the platform
 - Consume or generate electricity randomly (weather)
- Prototypical example: solar panel owners (prosumers)
 - Generating or consuming electricity, depending on the sun

Challenges and Regulation of Distributed Generation

- Solar PV Regulation: a challenging issue
- Many countries -> policies to PROMOTE SOLAR PANELS
 - E.g. Net Metering, production-based subsidies (FiT), etc.
 - Goal: reduce generation from "pollutant" sources
- But at the same time -> how do we redistribute grid fees?
 - Challenging to agree on a "fair" solution to all grid consumers

Goals of this paper

- TSO's fees in a two-sided market in the presence of "hybrid" end-users (i.e. solar panel owners)
- Tradeoff: promoting "on-site" generation VS. potential "(un)fairness"/inefficiency
- Study agents' incentives to become a prosumers
- Focus on the effect of three main policies:
 - Upfront (installation-based) subsidies to prosumers
 - Production-based subsidies to prosumers
 - Net Metering

Overview of the results

- No subsidy ⇒ no agent want to become a prosumer
 - In line with some anecdotal evidence (e.g. Spain)

Overview of the results

- No subsidy ⇒ no agent want to become a prosumer
 - In line with some anecdotal evidence (e.g. Spain)
- Prosumers in the market in the presence of subsidies
 - Characterize the size and requirements of the subsidies such that prosumers are present in equilibrium

Overview of the results

- No subsidy ⇒ no agent want to become a prosumer
 - In line with some anecdotal evidence (e.g. Spain)
- Prosumers in the market in the presence of subsidies
 - Characterize the size and requirements of the subsidies such that prosumers are present in equilibrium
- Subsidies increase fees paid by non-solar-panel owners
 - Redistribution problems –see Borenstein and Davis (2016)

Fit in the literature

- Two-sided markets literature
 - Mixed two-sided markets by Gao (2018) IER

- Energy & Environmental literature
 - Brown et al. (2017) EJ /// Gautier et al. (2017) JRE

Overview

- 1 Introduction
- 2 Model Setup
- 3 Equilibrium in the absence of environmental policies
- Equilibrium in the presence of environmental policies
- 5 Conclusions

The Platform

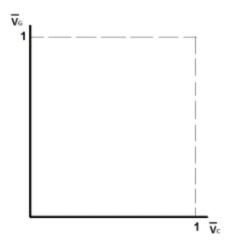
- Independent Transmission system operator (TSO)
 - Monopoly platform
 - Connects generators (G) and consumers (C)
 - Manages the transmission and distribution of electricity
- Generators produce/sell electricity that consumers enjoy...
 - ...but they must use the platform (the grid) to trade

End-users' endogenous decisions

- A unit-measure, continuum of agents choose to become:
 - a) Generators (join side G), N_G
 - b) Consumers (join side C), N_C
 - c) "Both" producers and consumers of electricity, N_X
 - Prosumers, who own a decentralized generation unit (rooftop solar photovoltaic panel)
 - d) Not to join the platform (off-grid agents)

$$N_i \in [0,1]$$
 $\sum_i N_i \leq 1$, for $i \in \{G,C,X\}$

Prosumers


- Prosumers sell or buy depending on the sun (randomly)
 - a) Sell with probability θ
 - b) Buys with probability (1θ)
- Selling/buying: a random variable \sim Bernoulli distribution with parameter $\theta \in (0,1)$

Prosumers

- Prosumers sell or buy depending on the sun (randomly)
 - a) Sell with probability θ
 - b) Buys with probability (1θ)
- Selling/buying: a random variable \sim Bernoulli distribution with parameter $\theta \in (0,1)$
- Two alternative cases (similar results):
 - θ_j is independent for each prosumer $j \in [0, N_X]$
 - \bullet θ_i 's are different but correlated across consumers

End users' valuations

- \overline{v}_j : agents' idiosyncratic surplus of joining side $j \in \{G, C\}$
 - Independent for each agent
 - Each consumer is heterogeneous in both parameters
 - $\overline{v} \equiv (\overline{v}_G, \overline{v}_C) \in \mathbb{R}^2$, drawn from a joint distribution $F(\cdot)$

End users' valuations

- \overline{v}_j : agents' idiosyncratic surplus of joining side $j \in \{G, C\}$
 - Independent for each agent
 - Each consumer is heterogeneous in both parameters
 - $\overline{v} \equiv (\overline{v}_G, \overline{v}_C) \in \mathbb{R}^2$, drawn from a joint distribution $F(\cdot)$

• *Prosumers*' idiosyncratic surplus = $\theta \overline{v}_G + (1 - \theta) \overline{v}_C$

End users' valuations

- \overline{v}_j : agents' idiosyncratic surplus of joining side $j \in \{G, C\}$
 - Independent for each agent
 - Each consumer is heterogeneous in both parameters
 - $\overline{v} \equiv (\overline{v}_G, \overline{v}_C) \in \mathbb{R}^2$, drawn from a joint distribution $F(\cdot)$

- *Prosumers*' idiosyncratic surplus = $\theta \overline{v}_G + (1 \theta) \overline{v}_C$
- Extension: additional surplus for prosumers \overline{v}_X
 - Preference towards solar panels (environmental preference)

Cross-side positive network effect

- A consumer is happy if an extra generator joins because
 - Increase in security of supply (reliability)
 - Increase in market competition
- A generator is happy if an extra consumer joins because
 - Increase in the demand

Cross-side positive network effect

- A consumer is happy if an extra generator joins because
 - Increase in security of supply (reliability)
 - Increase in market competition
- A generator is happy if an extra consumer joins because
 - Increase in the demand
- α_j for $j \in \{G, C\}$ = cross-side positive network effect

TSO's fees

- Agents must pay fees to the TSO
 - Fixed fee (lump-sum): F_j for $j \in \{G, C\}$
 - Variable fee (per-unit of electricity exchanged): p

 Fees are set by the TSO to compensate for transmission, network expansion, O&M and other delivery costs

Market timing

- **1** TSO chooses fees $p \equiv (p, F_G, F_C)$
- ② Nature chooses $\overline{v} \equiv (\overline{v}_G, \overline{v}_C)$ (and \overline{v}_X)
- **3** Agents observe p, θ , α and \overline{v} (and \overline{v}_X), and choose side
- Agents interact, and payoffs are realized

Agents' utilities

• Joining side *G*:

$$u_G \equiv \overline{v}_G + (\alpha_G - p)N_C + (\alpha_G - p)(1 - \theta)N_X - F_G$$

Agents' utilities

• Joining side *G*:

$$u_G \equiv \overline{v}_G + (\alpha_G - p)N_C + (\alpha_G - p)(1 - \theta)N_X - F_G$$

Joining side C:

$$u_C \equiv \overline{v}_C + (\alpha_C - p)N_G + (\alpha_C - p)\theta N_X - F_C$$

Joining both sides X:

$$u_X \equiv \overline{v}_X + \theta [\overline{v}_G + (\alpha_G - p)N_C + (\alpha_G - p)(1 - \theta)N_X] +$$

$$+ (1 - \theta)(\overline{v}_C + (\alpha_C - p)N_G + (\alpha_C - p)\theta N_X) - F_G - F_C$$

Sides' demands

Side *j* demand is given by a combination of

- a) A Participation Constraint (PC): $u_i > 0$
- b) An Incentive Compatibility Constraint (ICC): $u_j > u_{-j}$

Sides' demands

Side *j* demand is given by a combination of

- a) A Participation Constraint (PC): $u_j > 0$
- b) An Incentive Compatibility Constraint (ICC): $u_j > u_{-j}$

$$N_G \equiv D_G(\boldsymbol{u}) = pr(u_G \ge \max\{u_C, u_X, 0\})$$

Sides' demands

Side *j* demand is given by a combination of

- a) A Participation Constraint (PC): $u_i > 0$
- b) An Incentive Compatibility Constraint (ICC): $u_j > u_{-j}$

$$N_G \equiv D_G(\mathbf{u}) = pr(u_G \ge \max\{u_C, u_X, 0\})$$

$$N_C \equiv D_C(\mathbf{u}) = pr(u_C \ge \max\{u_G, u_X, 0\})$$

$$N_X \equiv D_X(\mathbf{u}) = pr(u_X \ge \max\{u_G, u_C, 0\})$$

Overview

- 1 Introduction
- 2 Model Setup
- 3 Equilibrium in the absence of environmental policies
- 4 Equilibrium in the presence of environmental policies
- 5 Conclusions

Demand for solar panels

- No policies that promote solar panels
 - Prosumers pay both access fees (F_G and F_C)

Demand for solar panels

- No policies that promote solar panels
 - Prosumers pay both access fees (F_G and F_C)

Proposition

In the absence of environmental policies, if $\bar{v}_X = 0$, then $D_X(\mathbf{u}) = 0$

If agents have no "environmental preferences" ($\bar{v}_X = 0$), and there are no policies, then there are no prosumers in equilibrium

Demand for solar panels

- No policies that promote solar panels
 - Prosumers pay both access fees (F_G and F_C)

Proposition

In the absence of environmental policies, if $\bar{v}_X = 0$, then $D_X(\boldsymbol{u}) = 0$

If agents have no "environmental preferences" ($\bar{v}_X = 0$), and there are no policies, then there are no prosumers in equilibrium

• If $\overline{v}_X > 0$ (sufficiently high), we have $D_X(\mathbf{u}) > 0$

TSO's regulated pricing

- TSO's profit = fees raised from agents minus costs
 - Per-transaction cost: c > 0
 - Fixed cost per consumer: C > 0

TSO costs -> infrastructure costs, system services and losses, depreciation of capital, etc.

- TSO = benevolent social planner
 - Fulfill the balanced-budget condition ($\pi = 0$)
 - Set fees such that Revenue = Costs

TSO's regulated pricing

• TSO's profit with no environmetal policies (and $\overline{v}_X = 0$):

(recall —> no prosumers in the market)

$$\pi = (2\hat{p} - c)N_GN_C + (\hat{F}_G - C)N_G + (\hat{F}_C - C)N_C$$

where \hat{p} and \hat{F}_i TSO's fees

TSO's regulated pricing

• TSO's profit with no environmetal policies (and $\overline{v}_X = 0$):

(recall —> no prosumers in the market)

$$\pi = (2\hat{p} - c)N_GN_C + (\hat{F}_G - C)N_G + (\hat{F}_C - C)N_C$$

where \hat{p} and \hat{F}_i TSO's fees

TSO pricing:

$$\hat{p} = \frac{c}{2}$$

$$\hat{F}_j = C$$
, for $j \in \{G, C\}$

Sides Demands under TSO's regulated pricing

• Given TSO pricing $\hat{p} = \frac{c}{2}$ and $\hat{F}_j = C$, demands are:

$$D_G(\boldsymbol{u}) = pr(\overline{v}_G + (\alpha_G - c/2)N_C \ge \max\{\overline{v}_C + (\alpha_C - c/2)N_G, C\})$$

$$D_C(\boldsymbol{u}) = pr(\overline{v}_C + (\alpha_C - c/2)N_G \ge \max\{\overline{v}_G + (\alpha_G - c/2)N_C, C\})$$

$$D_X(\boldsymbol{u}) = 0$$

Overview

- 1 Introduction
- 2 Model Setup
- 3 Equilibrium in the absence of environmental policies
- Equilibrium in the presence of environmental policies
- 5 Conclusions

Environmental policies

- 1) Upfront installation-based (lump-sum) subsidies
 - California Solar Initiative (CSI)
 - Australian Solar Rebate
 - Greece (National Development Law 3908/2011)
- 2) Production-based subsidies
 - Feed-in-tariffs (FIT) —> solar panel owners sell electricity to the grid with a premium over the retail price (e.g. Germany)
- 3) Net Mering
 - Extremely popular policy in the US (in many States)

Upfront installation-based (lump-sum) subsidy

Environmental policies: lump-sum subsidy

Prosumer surplus under upfront lump-sum subsidy

•
$$u_X^u \equiv \overline{v}_X + \theta[\overline{v}_G + (\alpha_G - p)N_C + (\alpha_G - p)(1 - \theta)N_X] + (1 - \theta)(\overline{v}_C + (\alpha_C - p)N_G + (\alpha_C - p)\theta N_X) - F_G - F_C + S$$

Environmental policies: lump-sum subsidy

Prosumer surplus under upfront lump-sum subsidy

•
$$u_X^u \equiv \overline{v}_X + \theta[\overline{v}_G + (\alpha_G - p)N_C + (\alpha_G - p)(1 - \theta)N_X] + (1 - \theta)(\overline{v}_C + (\alpha_C - p)N_G + (\alpha_C - p)\theta N_X) - F_G - F_C + S$$

Proposition

If
$$S > (1 - \theta)F_G + \theta F_C \Rightarrow D_X^u(\mathbf{u}) > 0$$
 (even if $\overline{v}_X = 0$)

If subsidy is sufficiently large, even if agents have no "environmental preferences" ($\bar{v}_X = 0$), then there are prosumers in equilibrium

• TSO's profit with a lump-sum subsidy $S > (1 - \theta)F_G + \theta F_C$:

(recall —> now there are prosumers in the market)

$$\pi^{u} = (2\hat{p}^{u} - c) (N_{G} + \theta N_{X}) [N_{C} + (1 - \theta)N_{X}] + (\hat{F}_{G}^{u} - C)N_{G} + (\hat{F}_{C}^{u} - C)N_{C} + (\hat{F}_{G}^{u} + \hat{F}_{C}^{u} - S - 2C)N_{X}$$

where \hat{p}^u and \hat{F}^u_i TSO's fees

• TSO's profit with a lump-sum subsidy $S > (1 - \theta)F_G + \theta F_C$:

(recall —> now there are prosumers in the market)

$$\pi^{u} = (2\hat{p}^{u} - c) (N_{G} + \theta N_{X}) [N_{C} + (1 - \theta)N_{X}] + (\hat{F}_{G}^{u} - C)N_{G} + (\hat{F}_{C}^{u} - C)N_{C} + (\hat{F}_{G}^{u} + \hat{F}_{C}^{u} - S - 2C)N_{X}$$

where \hat{p}^u and \hat{F}^u_i TSO's fees

TSO pricing:

$$\hat{p}^u = \frac{c}{2}$$

• TSO's profit with a lump-sum subsidy $S > (1 - \theta)F_G + \theta F_C$:

(recall —> now there are prosumers in the market)

$$\pi^{u} = (2\hat{p}^{u} - c) (N_{G} + \theta N_{X}) [N_{C} + (1 - \theta)N_{X}] + (\hat{F}_{G}^{u} - C)N_{G} + (\hat{F}_{C}^{u} - C)N_{C} + (\hat{F}_{G}^{u} + \hat{F}_{C}^{u} - S - 2C)N_{X}$$

where \hat{p}^u and \hat{F}^u_i TSO's fees

TSO pricing:

$$\hat{p}^u = \frac{c}{2}$$

$$\hat{F}^u_j = C + rac{SN_X}{N_C + N_G + 2N_X}$$
, for $j \in \{G, C\}$

We can show that:

$$\hat{F}_{j}^{u} = C + \frac{SN_{X}}{N_{C} + N_{G} + 2N_{X}} > C = \hat{F}_{j}$$

- Fees to generators and consumers (not to prosumers) are greater in comparison to the no environmental policy case
- Generators and consumers pay the extra burden generated by the subsidy

Production-based subsidy

Environmental policies: production-based subsidy

Prosumer surplus under production-based subsidy

•
$$u_X^p \equiv \overline{v}_X + \theta [\overline{v}_G + (\alpha_G - p + s)N_C + (\alpha_G - p + s)(1 - \theta)N_X] + (1 - \theta)(\overline{v}_C + (\alpha_C - p)N_G + (\alpha_C - p)\theta N_X) - F_G - F_C$$

Environmental policies: production-based subsidy

Prosumer surplus under production-based subsidy

•
$$u_X^p \equiv \overline{v}_X + \theta[\overline{v}_G + (\alpha_G - p + s)N_C + (\alpha_G - p + s)(1 - \theta)N_X] + (1 - \theta)(\overline{v}_C + (\alpha_C - p)N_G + (\alpha_C - p)\theta N_X) - F_G - F_C$$

Proposition

If
$$s > \frac{(1-\theta)F_G + \theta F_C}{\theta[N_C + (1-\theta)N_X]} \Rightarrow D_X^o(\boldsymbol{u}) > 0$$
 (even if $\overline{v}_X = 0$)

If subsidy is sufficiently large, even if agents have no "environmental preferences" ($\bar{v}_X = 0$), then there are prosumers in equilibrium

• TSO's profit w/ production-based subsidy $s>\frac{(1-\theta)F_G+\theta F_C}{\theta[N_C+(1-\theta)N_X]}$: (recall —> now there are prosumers in the market)

$$\pi^{p} = (2\hat{p}^{p} - c)N_{G}[N_{C} + (1 - \theta)N_{X}] + (2\hat{p}^{p} - s - c)(\theta N_{X})[N_{C} + (1 - \theta)N_{X}] + (\hat{F}_{G}^{p} - C)N_{G} + (\hat{F}_{C}^{p} - C)N_{C} + (\hat{F}_{G}^{p} + \hat{F}_{C}^{p} - 2C)N_{X}$$

where \hat{p}^p and \hat{F}^p_i TSO's fees

• TSO's profit w/ production-based subsidy $s>\frac{(1-\theta)F_G+\theta F_C}{\theta[N_C+(1-\theta)N_X]}$: (recall —> now there are prosumers in the market)

$$\pi^{p} = (2\hat{p}^{p} - c)N_{G}[N_{C} + (1 - \theta)N_{X}] + (2\hat{p}^{p} - s - c)(\theta N_{X})[N_{C} + (1 - \theta)N_{X}] + (\hat{F}_{G}^{p} - C)N_{G} + (\hat{F}_{C}^{p} - C)N_{C} + (\hat{F}_{G}^{p} + \hat{F}_{C}^{p} - 2C)N_{X}$$

where \hat{p}^p and \hat{F}^p_i TSO's fees

TSO pricing:

$$\hat{p}^p = \frac{c}{2}$$

• TSO's profit w/ production-based subsidy $s > \frac{(1-\theta)F_G + \theta F_C}{\theta[N_C + (1-\theta)N_X]}$: (recall —> now there are prosumers in the market)

$$\pi^{p} = (2\hat{p}^{p} - c)N_{G}[N_{C} + (1 - \theta)N_{X}] + (2\hat{p}^{p} - s - c)(\theta N_{X})[N_{C} + (1 - \theta)N_{X}] + (\hat{F}_{G}^{p} - C)N_{G} + (\hat{F}_{C}^{p} - C)N_{C} + (\hat{F}_{G}^{p} + \hat{F}_{C}^{p} - 2C)N_{X}$$

where \hat{p}^p and \hat{F}^p_i TSO's fees

TSO pricing:

$$\hat{p}^p = \frac{c}{2}$$

$$\hat{F}_{j}^{p} = C + \frac{sN_{X}\theta[N_{C} + (1 - \theta)N_{X}]}{N_{C} + N_{G} + 2N_{X}}$$
, for $j \in \{G, C\}$

We can show that:

$$\hat{F}_{j}^{p} = C + \frac{sN_{X}\theta[N_{C} + (1 - \theta)N_{X}]}{N_{C} + N_{G} + 2N_{X}} > C = \hat{F}_{j}$$

- Fees to generators and consumers (not to prosumers) are greater in comparison to the no environmental policy case
- Generators and consumers pay the extra burden generated by the subsidy

Net Metering

Net Metering is like a "clock"

- Net Metering is like a "clock"
- Prosumer surplus under Net Metering

•
$$u_X^{nm} \equiv \overline{v}_X + \theta[\overline{v}_G + \alpha_G(N_C + (1-\theta)N_X)] + (1-\theta)[\overline{v}_C + \alpha_C(N_G + \theta N_X)] - \boldsymbol{p}|\theta - (\mathbf{1} - \theta)|A - F_G - F_C,$$

where

$$A \equiv \mathbb{1}_{\theta - (1 - \theta) > 0} * (N_C + (1 - \theta)N_X) + \mathbb{1}_{\theta - (1 - \theta) < 0} * (N_G + \theta N_X)$$

• If $\theta \approx 0.5 \Rightarrow$ prosumers pay no variable fee

We can show that NM implies a subsidy for prosumers:

Proposition

$$u_X^{nm} > u_X$$
 for all $\theta \in (0,1)$

We can show that NM implies a subsidy for prosumers:

Proposition

$$u_X^{nm} > u_X$$
 for all $\theta \in (0,1)$

• Are there prosumers in equilibrium (with $\overline{v}_X = 0$)?

Proposition

If
$$p\{\theta[N_C + (1-\theta)N_X] + (1-\theta)(N_G + \theta N_X) - |\theta - (1-\theta)|A\} > (1-\theta)F_G + \theta F_C \Rightarrow D_X^{nm}(u) > 0 \text{ (even if } \overline{v}_X = 0)$$

If $\theta \approx 0.5$ and/or p is high, even if agents have no "environmental preferences" ($\overline{v}_X = 0$), then there are prosumers in equilibrium

TSO's profit with Net Metering:

(recall —> now there are prosumers in the market)

$$\pi^{nm} = (2\hat{p}^{nm} - c)N_G N_C +$$

$$+ (\hat{p}^{nm} + \hat{p}^{nm} | \theta - (1 - \theta)| - c)[N_G (1 - \theta)N_X + \theta N_X N_C] +$$

$$+ (2\hat{p}^{nm} | \theta - (1 - \theta)| - c)(\theta N_X (1 - \theta)N_X) +$$

$$+ (F_G - C)N_G + (F_C - C)N_C + (F_G + F_C - 2C)N_X$$

where \hat{p}^{nm} and \hat{F}^p_j TSO's fees

TSO's profit with Net Metering:

(recall —> now there are prosumers in the market)

$$\pi^{nm} = (2\hat{p}^{nm} - c)N_GN_C +$$

$$+ (\hat{p}^{nm} + \hat{p}^{nm}|\theta - (1 - \theta)| - c)[N_G(1 - \theta)N_X + \theta N_X N_C] +$$

$$+ (2\hat{p}^{nm}|\theta - (1 - \theta)| - c)(\theta N_X(1 - \theta)N_X) +$$

$$+ (F_G - C)N_G + (F_C - C)N_C + (F_G + F_C - 2C)N_X$$

where \hat{p}^{nm} and \hat{F}^p_j TSO's fees

TSO pricing:

$$\hat{p}^{nm} = \frac{c}{2}$$

TSO's profit with Net Metering:

(recall —> now there are prosumers in the market)

$$\pi^{nm} = (2\hat{p}^{nm} - c)N_G N_C +$$

$$+ (\hat{p}^{nm} + \hat{p}^{nm} | \theta - (1 - \theta)| - c)[N_G (1 - \theta)N_X + \theta N_X N_C] +$$

$$+ (2\hat{p}^{nm} | \theta - (1 - \theta)| - c)(\theta N_X (1 - \theta)N_X) +$$

$$+ (F_G - C)N_G + (F_C - C)N_C + (F_G + F_C - 2C)N_X$$

where \hat{p}^{nm} and \hat{F}^p_j TSO's fees

TSO pricing:

$$\hat{p}^{nm} = \frac{c}{2}$$

$$\hat{F}^{nm} = C + \frac{c(1-|\theta-(1-\theta)|)\left[\frac{1}{2}[(1-\theta)N_G + \theta N_C] + \theta(1-\theta)N_X\right]N_X}{N_G + N_C + 2N_X}, \text{ for } j \in \{G,C\}$$

We can show that:

$$\hat{F}^{nm} = C + \frac{c(1-|\theta-(1-\theta)|)\left[\frac{1}{2}[(1-\theta)N_G + \theta N_C] + \theta(1-\theta)N_X\right]N_X}{N_G + N_C + 2N_X} > C = \hat{F}_j$$

- Fees to generators and consumers (not to prosumers) are greater in comparison to the no environmental policy case
- Generators and consumers pay the extra burden generated by the subsidy

Equivalence between the three policies?

Equivalence between the three policies?

 Lump-sum subsidy (S) and production-based subsidy (s) equivalent if

$$S = s\theta[N_C + (1 - \theta)N_X]$$

Same sides demands and same TSO's profit

- Net Metering is "uncontrollable"
 - Once implemented the number of solar panels depends on market conditions

Overview

- 1 Introduction
- 2 Model Setup
- 3 Equilibrium in the absence of environmental policies
- 4 Equilibrium in the presence of environmental policies
- 5 Conclusions

Conclusions

- First paper that models the electricity market as two-sided
- Study agents' incentives to become a prosumers
 - Prosumers in the market ONLY if there are subsidies
- Subsidies increase fees paid by non-solar-panel owners

Conclusions

- First paper that models the electricity market as two-sided
- Study agents' incentives to become a prosumers
 - Prosumers in the market ONLY if there are subsidies
- Subsidies increase fees paid by non-solar-panel owners
- Work in progress...

46

Thanks! Questions?

Your feedback is much appreciated: rbajo@unav.es

