

Why analysis of global gas markets at SWM?

- Electricity: generation, distribution, sales
- Natural gas: production, transport, distribution, sales

- District heating: generation, distribution, sales
- Water: collection, distribution, sales

 Swimming pools: indoor pools, open-air pools, saunas, ice skating

- Mobility: subway, tram, bus, cycle rental system, etc.
- Telecommunications: Internet, phone and TV with fibreoptic technology

WEGA delivers gas flows and gas price development

- WEGA is the abbreviation of 'Weltweites Gasmarktmodell'
- Worldwide model in daily resolution 2018-2040
- ▶ Goal of optimization → cover the demand in each zone/country/hub at each day at minimized costs
- The model was developed by PÖYRY Management Consulting (here: Pegasus)
- Linear Programming with Xpress from FICO
- Source code and dataset was purchased by SWM
- The complete dataset was modified by SWM
 - → Results are an own view of SWM

Modification of parameters by SWM

- Oil price and EUR/USD exchange rate
- Pipelines, Interconnections
- LNG terminals
- Storages
- Gas demand / own fundamental electricity model
- Costs (commercial databases for CAPEX, OPEX, transport costs)
- Contracts (CEDIGAZ, BNEF LNG contract database)
- Production volumes and flexibility of gas fields
- Actual gas flows and backtesting

Worldwide gas market as a grid of nodes and edges

- Source: pipeline or LNG
- Source: indigenous production
- Source: demand shedding
- Delivery point: pipeline or LNG
- Demand zone: country / region / rest of the world
- Storage: in demand zone
- Interconnection: between demand zones

User interface of WEGA

- Two strings
- Capacity 55 bcma
- European gas demand-15% until 2040
- Transit flows Ukraine limited, but > 0

Calculated average price difference in EUR₂₀₁₇/MWh on wholesale gas prices in the period of 2020 till 2040 if Nord Stream 2 would not be built

United Kingdom	France	Nether- lands	Germany	Czech Republic	Poland	Italy	Bulgaria	Romania
0.66	0.70	0.79	0.80	0.89	0.70	0.55	0.39	0.15

rounded volumes in bcm; only gas flows ≥ 1 bcma

Pipeline flows in 2028 with Nord Stream 2

rounded volumes in bcm; only gas flows ≥ 1 bcma

Pipeline flows in 2028 without Nord Stream 2

Conclusion

- With North Stream 2 in the presented Base Case
 - North Stream 2 is not fully utilized on an annual level
 - Gas flows from Norway to Germany are directed to Northwest Europe
 - Ca. 20 bcm of LNG are pushed out of the merit order in Northwest Europe in 2028
 - More transit flows via Germany (+17 bcm in 2028)
 - Less gas flows from Poland to Germany (-14 bcm in 2028)
 - Moderate reduction of wholesale gas prices in Europe
- Transit contract between Gazprom and Naftogaz expires; uncertainty about transit flows via Ukraine in long-term
- Transit flows via Ukraine are only a last option for Russia

Contact details

Dr. Maik Günther Expert Energy Economics

Stadtwerke München GmbH Energy Strategy and Policy Emmy-Noether-Str. 2 80992 Munich / Germany

+49 89 2361-6631 guenther.maik@swm.de www.swm.de

