

Financing the gas transmission network Analyzing the effects of duration dependent multipliers Eren Çam | Dominic Lencz | Simon Schulte | ENERDAY – Dresden | 12.04.2019

Agenda

- Motivation & Background
- Research question and methodology
- Preliminary results

Consequence

- Decreased demand for long-term transmission capacity
- Increased demand for short-term (e.g. daily) transmission capacity

Implication

 Efficient pricing of short-term vs. long-term transmission capacities gets more relevant

Financing the gas transmission network

- **Who:** Gas traders who transfer gas using the gas transmission network
- What: Entering and exiting a transmission grid market area (entry-/exit-tariffs)
- **How:** Traders need to buy the transmission capacity they require in explicit auctions

How is transmission capacity priced?

1 – 1.5 for quarterly and monthly capacity

1 – 3.0 for daily and intradaily capacity

duration dependent tariff (reserve price)

auction premium

2017

Multipliers increase the relative price of short-term capacities in comparison to long-term capacities

Impact on transport, storage, gas prices

Impact on 1) short-term efficiency, 2) long-term efficiency and

3) allocation of costs

ewi Introduction Research question

The big multiplier question What are the adequate multipliers to balance between

- 1. facilitating short-term gas trade,
- 2. providing long-term signals for efficient investment in the transmission network,
- 3. enhancing cost reflectiveness of transmission network charges?

This question is discussed currently EU-wide within an a consultation (NC TAR 2017 (Article 28))

Question analyzed in this research

What are the effects of multipliers on the gas dispatch?

Intuitive hypotheses:

- 1. Multipliers increase long-term capacity bookings.
- 2. Multipliers decrease volatility of gas transports.
- 3. Multipliers increase storage utilization.
- 4. Multipliers increase price differences between market zones in most situations.
- 5. Multipliers increase total costs in the short-term and hence reduce efficiency.

Input

Gas Supply

Gas Demand

Gas Infrastructure

Linear Optimization

<u>Objective function:</u> Cost-minimal demand satisfaction, restricted by available capacities

Output

Natural gas trade

Infrastructure utilization

Import costs/ HUB prices

Geocoded Database Coverage: Europe > 600 nodes

> 900 pipeline sections

- Based on TSO maps
- Capacity/ pressure/ diameter
- Entry- and Exit-Points

> 200 Storages

- Storage type
- Maximum injection/ withdrawal capacity
- Working gas volume

> 30 LNG import terminals

- Max. hourly/ annual capacity
- LNG storage capacity

Implicit assumptions

Perfect information (no uncertainty)

eui Methodology Model extension

Equation 1 - Modification of cost minimization function	
$\underset{t,n,n_1,p}{\text{minimize } TOTAL_COSTS = CB_COSTS_{t,n,n_1,p} + STORAGE_COSTS + \dots \\$	

Equation 2 - Definition of capacity booking costs

$$CB_COSTS_{t,n,n_1,p} = CB_{t,n,n_1,p} \cdot tariff_{n,n_1} \cdot multiplier_p$$

(1)

(2)

Equation 3/4 - Defining required capacity booking			
$CB_{t,n,n_1,p} \geq TRANSPORT_CB_{t,n,n_1,p}$	$\forall i(n,n_1)$	(3)	
$CB_{t,n,n_1,p} = CB_{n,n_1,p}^{MAP}$		(4)	

Equation 5 - Assigning transported volumes to corresponding capacity products $TRANSPORT_{t,n,n_1} = \sum_{p} TRANSPORT_CB_{t,n,n_1,p}$ (5)

Legend

 $t \in T$ points in time

 $n, n_1 \in N$ nodes in the pipeline network

- $p \in P$ capacity products (defined by duration, start and end date)
- $i(n, n_1)$ subset of pipeline connections where entry/exit tariffs are applied

eui Hypotheses testing Indicative model results

Hypotheses 1/2:

Model results

Multipliers increase long-term capacity bookings.

Multipliers decrease seasonality and short-term volatility of gas transports.

mcm/d mcm/d Without multipliers With multipliers 45 45 40 40 when 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 Oct lan Apr Jul Dec Apr lul Oct Dec Jan Transport volume Legend Monthly Daily Quarterly (earlv

Capacity booking/transport (NCG - Switzerland)

Both hypotheses are supported by our model results.

When multipliers are in place storages are utilized more.

Model results

Model results

Hypotheses 4: Multipliers increase price differences between market zones in most situations.

- Price difference differ with and without multipliers
- On average price differences are higher with multipliers
- When there is capacity which is booked but used (only the case in scenario with multipliers) price differences are zero

Hypothesis is supported by our model results.

Outlook

- Analysis regarding the implications on short-term efficiency (Hypothesis 5)
 - based on the model framework
 - in a theoretical framework
- Analyzing the impact of uncertainty

Dominic Lencz

Research Associate

Energiewirtschaftliches Institut an der Universität zu Köln gGmbH | 12.04.2019

dominic.lencz@ewi.uni-koeln.de | +49 221 27729 324

Multipliers decrease seasonality and short-term volatility of gas transports.

Cross market area transports

Model results

Hypotheses 2:

Multipliers reduce volatility as assumed and reduce congestion.

CH

Gaspool

VTP_SK

OPAL

FI

LV

NetConnect

■ BG_2

GR

BY

HU

IE

TTF

RS

SI

UA 🛛

PSV

VTP_CZ

Storages are utilized more when multipliers are in place.

Model results

Equation 1 - Modification of cost minimization function

 $\underset{t,n,n_{1},p}{\text{minimize } TOTAL_COSTS = CB_COSTS_{t,n,n_{1},p} + STORAGE_COSTS + \dots}$

(1)

Legend

- $t \in T$ points in time
- $n, n_1 \in N$ nodes in the pipeline network
- $p \in P$ capacity products (defined by duration, start and end date)
- $i(n, n_1)$ subset of pipeline connections where entry/exit tariffs are applied