Incentive-based Subsidy and Tax for Efficient
 Generation Investment

L. Varawala ${ }^{1}$, M. R. Hesamzadeh ${ }^{1}$, G. Dán ${ }^{1}$, I. Vogelsang ${ }^{2}$, J.

Rosellon ${ }^{3,4}$
${ }^{1}$ KTH Royal Institute of Technology
${ }^{2}$ Boston University
${ }^{3}$ Centro de Investigación y Docencia Económicas
${ }^{4}$ DIW Berlin

Dresden, April 11, 2019

System operator: Social welfare maximiser

$$
\begin{aligned}
& \max _{\text {Price }}^{\max }(\text { Consumer surplus }+ \text { Producer surplus } \\
& \qquad+ \text { Merchandising surplus - Externalities }) .
\end{aligned}
$$

Producer i : Profit maximiser

$$
\max _{\text {Output }} \text { Producer surplus }_{i}\left(\text { Price, Output }_{i}\right)
$$

- Small number of producers - market power
- No consideration for externalities such as pollution

There is a mismatch in desired outcomes. Regulation can address this ${ }^{1}$.

[^0]- Organisation
- Producers, consumers and merchant
- Need for regulation and problems with price caps
- Proposed regulatory scheme
- Conclusion - Properties of the scheme
- Regulatory phases (denoted by τ) - investment
- Spot market - production and consumption
- Producers - Generators, Oligopoly (denoted by i)
- Investment in generation capacity in regulatory phases
- Generation in the spot market
- Consumers - Loads, Continuum
- Consumption in the spot market
- Merchant - Transmission System Operator, Monopoly
- Investment in transmission capacity in regulatory phases
- Follows generator's investment decision
- Transmission capacity connects buses (denoted by j)
－Investment in generation capacity made during $\tau, k^{2} \geq 0$

－Production in spot market limited by capacity investment in regulatory phases－dependence on production can be transferred to capacity
－Pollution attributed to generation ${ }^{2}$
－Pollution depends upon choice of technology
－Pollution abatement，$e^{\text {E }}$

－Externality associated with pollution，$E_{\text {汤 }}:=E_{\text {匋 }}\left(x_{\text {馬 }}\right)$

[^1]

 concave

- Cost of invessment in transpmission capacity,

Need for Regulation

System operator:

1
(5
Generator i:

닶

- Market power - generators suppress output to increase prices and hence, revenue
- No consideration for pollution

Regulator provides generators with

where $F_{\text {比 }}$ is a fixed fee^{3}.

[^2]
Regulatory Scheme - Illustration

- The scheme is non-discriminatory.
- The regulator does not require information about the generators' cost functions.
- The subsidy of a generator decreases with increase in other generators' capacities.
- A Cournot equilibrium exists.
- The subsidy received is positive when there is a gain in social optimum, making participation voluntary.
- The regulator has to fund this scheme. However, the increase in consumer surplus and merchandising surplus due to the scheme is less than the subsidy.
- The subsidy encourages collusion.
- The scheme encourages generators to maximise social welfare.
- It is within the market framework.
- It incentivizes capacity investments.
- It eliminates market power.
- It encourages pollution abatement.
- Auxiliary schemes are required to solve the funding problem and address collusion.

Incentive-based Subsidy and Tax for Efficient
 Generation Investment

L. Varawala ${ }^{1}$, M. R. Hesamzadeh ${ }^{1}$, G. Dán ${ }^{1}$, I. Vogelsang ${ }^{2}$, J.

Rosellon ${ }^{3,4}$
${ }^{1}$ KTH Royal Institute of Technology
${ }^{2}$ Boston University
${ }^{3}$ Centro de Investigación y Docencia Económicas
${ }^{4}$ DIW Berlin

Dresden, April 11, 2019

[^0]: ${ }^{1}$ Loeb, M. \& Magat W. A., 1979. "A Decentralized Method for Utility Regulation," J Law and Econ.

[^1]: ${ }^{2}$ Kim，J．C．\＆Chang，K．B．，1993．＂An optimal tax／subsidy for output and pollution control under asymmetric information in oligopoly markets，＂J Regul Econ．

[^2]: ${ }^{3}$ Hesamzadeh, M.R. \& Rosellón, J. \& Gabriel, S.A. \& Vogelsang, I., 2018.
 "A simple regulatory incentive mechanism applied to electricity transmission pricing and investment," Energy Econ, Elsevier.

