NEARLY ZERO ENERGY CITIES: SCALABILITY OF ENERGY SELF-CONSUMPTION FROM BUILDINGS TO LARGE URBAN AREAS

Manuel Villa-Arrieta

ENERDAY 2019 - April 12th 13th Conference on Energy Economics and Technology

Low-Carbon Energy System Transformation: Setting the Course for the Next Decade

INDEX

- 1. Urban Energy Transition
- 2. Nearly Zero Energy City concept
- 3. Case study: Barcelona
- 4. Results
- 5. Conclusions

ABSTRACT AND HIGHLIGHTS

Study of the contribution of cities to the energy transition through the scalability of the "Nearly Zero Energy concept" from buildings to large urban areas.

Abstract and highlights
Urban Energy Transition
2. nZEC
3. Barcelona
4. Results
5. Conclusions

The Nearly Zero Energy City model (nZEC) is an indicator for the urban energy transition, that include:

- Evaluation of the self-consumption "macro"
- Global Cost and Optimal Cost
- Analysis of the energy systems flexibility:
 Participation of Consumers, Producers and Producers in the energy distribution of cities

1. URBAN ENERGY TRANSITION

Index:
Abstract and highlights
1. Urban Energy Transition
2. nZEC
3. Barcelona
4. Results
5. Conclusions

Problem

>50% of the world's population is urban Consumption of fossil resources and increase of electric demand

70% of the global energy consumption and GHG emissions¹

Technological context

Smart City model Smart Grids, Distributed Generation (DG) and Smart Meters

Flexibility of the system: Consumers, Producers and Producers Cities are at the center of the energy transition strategies

Source:

1UN Habitat. World Cities Report
2016 - Urbanization and
Development: Emerging Futures

(EPBD)

Manuel Villa-Arrieta

Villa-Arrieta M, Sumper A. Economic evaluation of Nearly Zero Energy Cities (2019), https://www.sciencedirect.com/ science/article/pii/S03062619183

2.1 EVALUATION MODEL OF nZECs Abstract and highlights 1. Urban Energy Transition 2. nZEC Nearly Zero Energy City (nZEC) 3. Barcelona 4. Results 5. Conclusions External energy Self-consumption in nZEBs Local generation of Producers supply by **Producers** Electric demand of the city $\mathsf{EATEP}: \ \mathsf{CG}(\mathsf{T})_\mathsf{Csr}, \mathsf{Pdr}, \mathsf{Psr} \ + \ \mathsf{CRG}(\mathsf{T})_\mathsf{Csr}, \mathsf{Pdr}, \mathsf{Psr} \ + \ \mathsf{CRG}(\mathsf{T})_\mathsf{Csr}, \mathsf{Pdr}, \mathsf{Psr} \ + \ \mathsf{CMG}(\mathsf{T})_\mathsf{Csr}, \mathsf{Pdr}, \mathsf{Psr}, \mathsf{Psr} \ + \ \mathsf{CMG}(\mathsf{T})_\mathsf{Csr}, \mathsf{Pdr}, \mathsf{Psr}, \mathsf{Psr} \ + \ \mathsf{CMG}(\mathsf{T})_\mathsf{Csr}, \mathsf{Pdr}, \mathsf{Psr}, \mathsf{Psr},$ Global Cost (Present value of annual costs) Dynamic simulation in TRaNsient SYstem Simulation tool (TRNSYS) Α Packages 5 6 3 Precio de compra de energia eléctrica 1 Villa-Arrieta M, Sumper A. A model for an economic evaluation of energy systems using TRNSYS (2018), https://www.sciencedierect.com/science/article/pii/S03062 Villa-Arrieta M, Sumper A. Costes de Consumidores-Prosumidores y Productores de energia en el marco de la autosuficiencia energética de Barcelona como Ciudad Inteligente (2018), CVG(T): Gobal Environmental Cost Type_EATEP_EEP Coste Global de Prosumidores - 📓 -Gobal TRNSYS 17 ŒG(T): Global Energy Cost Costs: CRG(T): Global Running Cost Type_EATEP_EEP-2 <u>-</u>

FX de EP y CO2

Type_EATEP_EGF

Coste Global de Productores

Manuel Villa-Arrieta

Coste Global de la ciudad

Inteligente (2018), https://goo.gl/euBybM

Caso de estudio Barcelona

3

- 🗐 -

CC(T)

[€/ m²]

GG(T): Global Investment Cost

ECG(T) [Wh_PE/m²]

⊞-Optimal

2.1 EVALUATION MODEL OF nZECs

Output

v-F2) Optimal-Cost and Other indicators

EEP-Optimal

CVG(T): Global Environmental Cost
CEG(T): Global Energy Cost
CRG(T): Global Running Cost
CIG(T): Global Investment Cost

Benefit Indicators:
 Energy, Environmental
 Comparative Ratios
 Effect-Index

Energy Demand (ED_nZEC) Vs Energy Available (EA_nZEC)

i-F2) Operation of nZEC-Model connected with EATEP-EEP in TRNSYS

Pe(s)

Type(s)

EG_{PSrS}, EG_{PSr}, EG_{Pdr}

Type(s)

ED_{PSrS}, ED_{PSr}, ED_{CSr}, ED_{CSrS}

Output

Outputs Inputs EATEP-EEP nomic perform

iv-F2) Structure of the economic flows

Source:
Villa-Arrieta M, Sumper A.
Economic evaluation of Nearly
Zero Energy Cities (2019),
https://www.sciencedirect.com/
science/article/pii/S03062619183
19007

Abstract and highlights

1. Urban Energy Transition

3. Barcelona 4. Results 5. Conclusions

3. CASE OF STUDY: BARCELONA

Characteristics of the city

- Electric power consumption of 6,700-7,000 GWh/Year.
- Area 102,159 km²
- 1% of total consumption comes from local renewable energy resources.
- 238,213 Buildings in the Map of renewable energy resources of Barcelona:
- ✓ 82,652 Buildings | 5.23 km² | 0.49 GW | 618 GWh

PV generation capacity (Map)

Source:
Barcelona Energia, A. de B. (2016a). ¿Cuánta energia puedes
generar?. Barcelona Energia, A. de B. (2016b). Mapa de
recursos d'energia renovable de Barcelona

Abstract and highlights
1. Urban Energy Transition

3. Barcelona4. Results5. Conclusions

3.1 CASES STUDIED

- Economic evaluation 2014-2050
- Self-consumption of the city: buildings and large rooftops
- Measures of Energy Efficiency in the façade of the buildings
- Distribution Peer-to-Peer (P2P) between Prosumers
- PV panels: 270 W | 2m² | 1,250 kWh/kWp·Year | 25 years of lifespan

1. Consumers and Producers invest in PV systems

- 52 Investment hypothesis:
- √ By generation capacity groups (Scenarios B-C)
- √ By groups of rooftop surfaces (Scenarios D-E-F)
- √ By percentage of buildings (Scenarios G-H)
- ✓ By selection of the generation capacity and surface of rooftops (Scenario I)
- Electricity prices and NG (Producers)

2. Prosumers and DG extra

- Hypothetical community P2P of Prosumers: 38,700 nZEBs (2-6 plants)
- Local extra generation in the city: 43,952 rooftops
- Six Packages of energy rehabilitation: Pg5 (general rehabilitation) and Pg6 (Low cost)
- Three electricity rates: Flat and two and three time periods of discrimination

Manuel Villa-Arrieta

Abstract and highlights

1. Urban Energy Transition
2. nZEC
3. Barcelona

4. Results
5. Conclusions

Villa-Arrieta M, Sümper A. Costes de Consumidores-Prosumidores y Productores de energia en el marco de la autosuficiencia energética de Barcelona como Ciudad Inteligente (2018), https://goo.gl/euBybM
Villa-Arrieta M, Sumper A. Economic evaluation of Nearly Zero Energy Cities (2019), https://www.sciencedirect.com/science/article/pii/S0306261918319007
ICAEN. Rehabilitació energètica d'edificis (2016)

3.1 CASE STUDIED

Case 2: Buildings typology Distribution of buildings evaluated in Prosumers, Consumers and PV_Extra. Source: [64–67].

	Code Subtotal	No. of floors	Type of building ^a	No. of buildings	Electric energy consumption [GWh/Year]
Prosumers	2F	2	A, B and C	12,463	61.787
	3F	3	D	6,238	41.853
	4F	4	I	4,842	245.457
	5F	5	E and H	7,082	339.516
	6F	6	F and G	8,075	274.779
	Subtotal	N/A	N/A	38,700	969.363
Consumers	Approach A	N/A	N/A	N/A	5,771.847
	Approach B	N/A	N/A	N/A	3,225.927
PV_Extra	N/A	No data	N/A	N/A	N/A
	N/A	1	N/A	2,135	N/A
	N/A	7	N/A	5,564	N/A
	N/A	8	N/A	3,606	N/A
	N/A	9	N/A	3,266	N/A
	N/A	≥10	N/A	3,636	N/A
	Subtotal	N/A	N/A	43,952	N/A
Total, Approach A N/A		N/A	N/A	82,652	6,735.24
Total, Approach B		N/A	N/A	82,652	4,189.32

^a Type of buildings: Single family detached house: A, built before 1951; B, built between 1951 and 1980; C, built between 1981 and 1990; D, built after 1990. Multi-family building: E, built before 1951; F, built between 1951 and 1980 with collective boiler; G, built between 1951 and 1980 without collective boiler; H, built between 1981 and 1990; I, built after 1990.

Manuel Villa-Ar

Abstract and highlights

1. Urban Energy Transition
2. nZEC
3. Barcelona
4. Results
5. Conclusions

Source:

Willa-Arrieta M, Sumper A.
Economic evaluation of Nearly
Zero Energy Cities (2019),
https://www.sciencedirect.co
m/science/article/pii/S03062
61918319007

ICAEN. Rehabilitació
energètica d'edificis (2016)

3.1 CASES STUDIED

Abstract and highlights

1. Urban Energy Transition 3. Barcelona 4. Results5. Conclusions

https://www.sciencedirect.com/science/article/pii/S0306261918319007

2. Prosumers and DG extra

RESULTS OF THE CASE 1

Optimal Cost: D5, consumers investment in rooftops of 250-500m²

Best results when **Producers** invest

Manuel Villa-Arrieta

Villa-Arrieta M, Sumper A. Costes de Consumidores-Prosumidores y Productores de energía en el marco de la autosuficiencia energética de Barcelona como Ciudad Inteligente (2018), https://goo.gl/euBybM

Abstract and highlights
1. Urban Energy Transition 4. Results
5. Conclusions

RESULTS OF THE CASE Abstract and highlights
1. Urban Energy Transition i-F5) A: Domestic, commercial and services, industrial, transport and other B: Domestic and commercial sectors and services ii-F4) Hourly average of the daily profile WWW. Holling of John Walls of the Color of t 220 -200 -4. Results
5. Conclusions 160 -500 140 -[M€/km2] - 001 - 08 60 -40 -20 125 S1 S2 S3 5,583.28 5,667.86 5,696.15 5,872.72 5,941.71 5,971.09 6,181.80 T. Endo Endo 1 Endo 2 ii-F5) C: Hypothetical community of Prosumers GC(T) _ AGC(T) _ BGC(T) _ C Demand A: domestic, commercial and services, industrial, 50 GEC(T) transport and other. GRC(T)

- Demand B: domestic, and comercial and services.
- Demanda C: community of Prosumers.
- Endo 1: Generation of Prosumers.
- Endo 2: Generation extra
- GC: Global Cost
- GEC: Global Energy Cost
- GRC: Global Running Cost
- GIC: Global Investment Cost

Villa-Arrieta M, Sumper A. Economic evaluation of Nearly Zero Energy Cities (2019), https://www.sciencedirect.com/science/article/pii/S0306261918319007

4. RESULTS OF THE CASE 2

- PV generation in the 34.7% of the rooftops of BCN and energy rehabilitation of 17% of its buildings:
- ✓ Reduction of 3.41-9.68% of primary energy.
- ✓ Reduction of 4.16-12.25% in energy costs.
- \checkmark Reduction of 5.16-11.43% of CO2 emissions.
- Better results with package of energy rehabilitation and the electricity tariff of three discrimination periods.
- ✓ The Prosumers community can reduce their primary energy consumption by up to 51%, up to 70% of CO2 emissions, and between 32-71.25% of their energy costs.

5. CONCLUSIONS

Any consumption of local renewable resources reduces the consumption of external energy (fossil) and the emission of GHG. But, at what cost?

Evaluating these costs with the scalability of the "Nearly Zero Energy concept" we can also evaluate:

- Self-consumption "macro".
- Energy flexibility of the distribution systems (Consumers, Prosumers and Producers).
- ✓ The tariff of three discrimination periods in Spain is favorable with the PV self-consumption.
- ✓ (Directive (UE) 2018/844 promotes the electromobility linked to the investment in systems of recharge in parkings).

Index:
Abstract and highlights
1. Urban Energy Transition
2. nZEC
3. Barcelona
4. Results
5. Conclusions

Thank you

Manuel Villa-Arrieta

https://www.researchgate.net/profile/Manuel Villa-Arrieta

mvilla@funseam.com

