

Enerday 2021

Why geographical balancing decreases electricity storage needs: a model-based illustration for Europe

Alexander Roth, Wolf-Peter Schill Dresden, 09 April 2021

Modellierung (De-)Zentraler Energiewenden: Wechselwirkungen, Koordination und Lösungsansätze aus systemorientierter Perspektive Supported by:

Federal Ministry for Economic Affai and Energy

on the basis of a decision by the German Bundestag

- Decarbonization of the economy requires a decarbonization of the energy system
 - → fossil sources are replaced by renewable energy sources
- Main sources of (variable) renewable energy: solar (photovoltaic) and wind
 - → Defining characteristic is their **variability**
- How to guarantee power supply in times of no wind and no sun?
 - (1) Imports from an area that has excess energy
 - (2) Storage
 - (3) Demand management

Motivation and literature

 Previous studies came to different conclusions on future storage requirements in Germany and Europe

Reference	Region	RES share	Conclusions on storage requirements
VDE (2012)	Germany	up to 100%	36 GW / 184 GWh short-term, 68 GW / 26 TWh long-term
Jägemann et al. (2013)	Europe	up to 85%	50 - 178 GW 5 - 223 TWh
Fürsch et al. (2013)	Europe	up to 80%	Energy and power ratings of around 10% and 15% of generation capacity
Pape et al. (2014)	Germany & Europe	up to 80%	0 - 20 GW in Germany depending on scenario Up to 320 GW / 1.6 TWh NaS, 190 GW / 2.7 TWh PHS, 900(550) GW / 800 TWh H2
Bussar et al. (2014-2016)	Europe & MENA	100%	
and many more			

→ unclear: what exactly is driving this finding?

[•] General notion: larger balancing area decreases electricity storage needs

Research question

To what extent does <u>geographical balancing mitigate</u> <u>storage needs in Europe</u> and what are the <u>drivers</u>?

The model DIETER

- Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER)
 - Open-source tool, used in various previous publications: www.diw.de/dieter
- Cost minimizing, linear dispatch and investment model
- Country-specific renewable energy constraint, relative to demand
- Endogenous variables:
 - Installed capacities (power plants, electricity storage)
 - Hourly generation, curtailment, storage (dis-)charging,
 NTC flows
- Covers 12 countries (nodes)
 - Net transfer capacity model between nodes
 - No grid modelled within node ("copper plate")
- Focus on electricity market, no sector coupling

Input data

- General idea: lean on established scenarios
- Main source: Sustainable transition scenario of ten-year network development plan (TYNDP) from ENTSO-E (2018):
 - Limits on generation capacities
 - Net transfer capacities (fixed)
 - Hourly load profiles
 - Fuel and CO₂ costs
- Additional data from other sources:
 - Renewable energy generation profiles (renewables.ninja)
 - Investment costs
 - Efficiency of generators and storage

Assumptions

Capacity expansion

- Lower, but no upper limit on investment in renewable energy sources (RES)
 - PV, wind onshore and offshore
- Upper limit on investment in conventional and nuclear generation given by **TYNDP (2018)**

Electricity storage

- Two storage technologies assumed:
 - Short-term: li-ion batteries
 - <u>Long-term:</u> power-to-gas-to-power (P2G2P)
 - Pumped-hydro storage deactivated (to allow for better identification of effects)
- Hydro reservoirs fixed as given by TYNDP (2018)

Driver	Description	
 Demand effect 	→ Different demand patters (profile & level)	
Renewable availability effect		
 Profile effect 	→ Different sun & wind patterns	
 Level effect 	→ Different total full load hours of sun & wind	
Capacity portfolio effect		
• Storage	→ Different legacy storage portfolios (e.g., reservoirs)	

→ Different legacy power plant portfolios (e.g., nuclear)

Power plants

Country effect:

→ No cross-country flow of electricity

Demand effect:

→ Assume that all countries have Germany's electricity demand, scaled to their level

Renewable availability effect:

→ Assume that all countries have Germany's PV / wind capacity factors (not scaled)

9

Scenario runs

We conduct the following runs:

- "no NTC" (no cross-country flows allowed):
 - a) **Default** time series
 - **b) Demand** in all countries as in Germany
 - c) PV profiles in all countries as in Germany
 - d) Wind profiles in all countries as in Germany
- 2. "NTC" (cross-country flows allowed):
 - a) **Default** time series
 - **b) Demand** in all countries as in Germany
 - c) PV profiles in all countries as in Germany
 - d) Wind profiles in all countries as in Germany

3.1

Country effects - Storage needs (Energy)

→ Geographical balancing mitigates long-term storage

Country effects - Storage needs (Energy) – difference to autarky

Storage needs (Energy): differences to autarky

→ Heterogenous effects for individual countries

Factor separation - <u>long-term</u> storage needs (energy) – difference to default

Uniform wind patterns lead to

- → more long-term storage in "no-NTC" scenario
- → reshuffling of long-term storage in "NTC" scenario

Factor separation - <u>short-term</u> storage needs (energy) – difference to default

Uniform wind patterns → more short-term storage (in "no NTC" and "NTC") ... which is triggered by higher PV capacities

Factor separation - power plant capacities - difference to default

- Uniform (German) wind patterns → higher investments into PV
- Uniform wind and PV patterns have limited influence

- (1) Need for storage in Europe decreases with interconnection
 - Long-term storage decreases much stronger than short-term storage
- (2) Differentiated wind, PV, and demand profiles have a small effect on storage need
 - Differentiated wind and PV profiles have a decreasing effect
 - Different effects for energy and power & for long- and short-term storages
 - Differentiated demand profiles have an increasing effect
- (3) Portfolio effect might be most important?

Thank you for your attention!

DIW Berlin — German Institute for Economic Research e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Alexander Roth