

Felix Jakob Fliegner, M.Sc.

Chair of Energy Economics, TU Dresden & System of the Future, 50Hertz

Shazam for the power sector

Application of Fourier transformation to unravel energy portfolio intermittency in the European power system

Content

- **1.** Setting the scene Fingerprints of volatility
- 2. Methodology Fourier in context of energy systems analysis
- 3. Results Portfolio intermittency & Correlation & Pooling
- 4. Conclusion Future applications

Fourier and Flexibility Felix Fliegner 30.09.2022, Dresden

Setting the scene

Fingerprints of volatility

Fourier transformation allows reverse engineering of volatile mixed time series data into reoccurring patters of volatility

4

Methodology

Fourier in context of energy systems analysis

Analysis is applied to a high RES powered European system

Data: RE time series: PECD | RE capacities: TYNDP draft scenario report 2022 GA 2050 | demand: MAF 2030 calibrated to EU 1.5TECH

Fourier and Flexibility Felix Fliegner 30.09.2022, Dresden

Results

9

30.09.2022. Dresden

Frequency spectra of RE infeed reveal distinct patters of volatility

Normalised frequency spectra for RE in five countries

Average deviations from mean capacity factor in % for 8760 hours over 35 climate years

Seasonality of RE mix matches well with demand on European average

Decomposed oscillations for RE infeed and demand in Europe 2050 – Seasonal & Weekly

Average hourly values in solid lines, climate year range in shades

PV drives daily volatility the most, RE surplus generation also substantial in winter time

30.09.2022, Dresden

Relative share of PV versus wind shapes flexibility needs

Upward flexibility requirements in GW in Europe 2050

Selected regions, solid line is mean, shade is climate variability

Sensitivity analysis on adequate Belgian power mix

14

30.09.2022, Dresden

Adding more PV to a power system is not a "wild card"

Data: RE time series: PECD | RE capacities: TYNDP draft scenario report 2022 GA 2050 and own assumptions

Weekly offshore wind volatility is not correlated across Europe

Correlation of BE offshore wind infeed with Europe in %

Statistics on fluctuations that occur simultaneously from one day up to a week

Summary

- Fourier Transformation is applied to RE time series data across Europe to disentangle drivers of volatility in a high RES powered power system
- Portfolios of RE mixes across countries reveal different fingerprints of volatility
 - Seasonality in the mix is best mitigated in a mix of 1/3 power generation from PV, onshore and offshore wind respectively
 - Daily volatility is driven by PV and best mitigated by short term flexibility means such as batteries
 - Medium term volatility is driven by wind onshore and offshore and efficiently mitigated by geographical spreading
- Future offshore grid development can leverage de-correlated infeed patterns
- An open-access python tool is made available to explore findings beyond this presentation

