

Schertz

Use of energy scenarios at a TSO in Germany

50hertz

Recent developments and opportunities for research

ENERDAY Dresden, 30.09.2022 | Dr. Martin Klein

Agenda

- 1. 50Hertz at a glance
- 2. Energy scenario planning what is it for?
- 3. Grid development plan (NEP) Overview
- 4. Most important assumptions in the current NEP
- 5. Topics under investigation and next steps

Our tasks

Energy scenarios

Set of consistent assumptions about a future energy system, not necessarily with a measure of probability

Energy scenarios in the strategic grid planning department - Time

Energy scenarios in the strategic grid planning department – Spatial

Martin Klein - TSO energy scenarios 7

Example for the short term: "Stress test" - Grid situation in Germany in stretchout mode during the most critical hour

- Total redispatch requirement: 18.2 GW
- In Austria, a contractually guaranteed 1.5 GW is available for redispatch
- Additional positive redispatch requirement of 5.1 GW abroad

- In Austria, a contractually guaranteed 1.5 GW is available for redispatch
- Additional positive redispatch requirement of 4.6 GW abroad

Medium-term example: What we want: future-proofing north-eastern Germany as an industrial base!

100 percent by **2032** New energy for a strong economy

Increasing industrial demand for green electricity in north-eastern Germany

* Illustration symbolises a concentration of indiviual sectors, non-exhaustive

Source: Wirtschaftsvereinigung Stahl, Verein Deutscher Zementwerke e.V., Deutsches Kupferinstitut Berufsverband e.V., TRIMET Aluminium SE, Verband der Chemischen Industrie e.V., Verband Deutscher Papierfabriken e.V., Bundesverband Glasindustrie e.V.

German Network Development Plan Netzentwicklungsplan (NEP)

The grid development process in Germany

Regulated by law (EnWG 12a, 12b, ...),

TSOs create draft of energy scenarios ("Szenariorahmen") • Joint effort of 50Hertz, Amprion, Tennet, TransnetBW (throughout the process!) Public consultation BNetzA organizes stakeholder feedback BNetzA releases official scenarios • Mid of July 2022 Currently TSOs conduct market and grid simulations and create report First draft: expected for beginning of 2023 Derivation of grid extension projects for the "Bundesbedarfsplan" Every 2 years ("federal requirement plan"), more steps to follow until realization

Grid development - Overview

 Network planning within the framework of the NEP Electricity is based on a fundamental determination and evaluation for a range of scenarios

Scenario creation process with the current NEP

Net-zero targets by 2045 as a guiding principle

Dood a lat of	Develop dema	and side	A: "molecule world"	
Conduct studies	Derive heating and mobility requirements	Derive supply	side Flexibility	B: "electron world" C: "inefficient electron world"
Conduct studies (recently: DSM, EVs, heating networks, industry, RES potentials)	Industrial load decomposition Survey of new large consumers at TSO and DSO level	potentials of onshore and offshore wind, PV Continuous survey of current and prospective power- plants	Heat pump and EV Electrolysers Power-to-Heat Transmission capacities, TYNDP 	

0-

Electricity consumption

Doubles by 2045 compared to today

	2018	2037	2045	(NEP21 B2040)
Households [TWh]	129	157 – 183	143 – 186	138
Service Sector [TWh]	130	168 – 186	162 – 186	126
Industry [TWh]	226	268 – 352	311 – 469	256
Electrolysis [TWh]	~ 0	78 – 120	150 – 240	36
Mobility [TWh]	13	93 – 141	119 – 173	66
Power-to-Heat [TWh]	~ 0	22 – 37	25 – 43	11
Other [TWh]	74	71	81	71
Sum (gross) [TWh]	572	899 – 1053	1079 – 1302	704

Installed RES in Germany until 2045 (scenarios B)

5 GW/a PV and 2 GW/a Wind Onshore in 50Hertz zone alone assuming that 30% of RES are built there

Renewables

	2020	2037	2045	(NEP21 B2040)
Wind Onshore [GW]	56.1	158.2 – 161.6	160.0 - 180.0	88.8
Wind Offshore [GW]	7.8	50.5 - 58.5	70.0	40.0
Photovoltaics [GW]	59.3	345.4	400.0 - 445.0	125.8
Biomass [GW]	9.5	4.5	2.0	8.2
Hydro [GW]	4.9	5.3	5.3	5.6
Other [GW]	1.1	1.0	1.0	1.3

Dispatchable Power plants

	2020	2037	2045	(NEP21 B2040)
Gas (natural gas/hydrogen) [GW]	32.1	> 38.4	> 38.4	42.4
Pumped Hydro [GW]	9.8	11.1	11.1	10.2
Coal [GW]	37.9	-	-	-
Nuclear [GW]	4.1	-	-	-
Other [GW]	4.3	1.0	1.0	4.8

Caveat: Network development plan does not assess security of supply

- Only consideration of known (gas) power plant locations
- Reserves ("slack generation") near load centers to avoid distortions in the trade balances

Interconnectors

- Ten-Year Network Development Plan 2022 as basis for electricity consumption and installed capacity abroad as well as for fuel prices
- Selection of **Distributed Energy** scenario with EU climate neutrality pathway to 2050.
- Interconnectors:
 - 2037: Consideration of interconnectors based on TYNDP project list in all scenarios
 - 2045: BNetzA specifies not to consider interconnector capacity for 2045 beyond the known 2037 projects

Flexibility Assumptions on load flexibility become increasingly important!

	2020	2037	2045	(NEP21 B2040)
Power-to-Gas [GW]	<0.1	26.0 - 40.0	50.0 - 80.0	10.5
Power-to-Heat (large) [GW]	0.8	12.6 – 22.0	14.9 – 27.0	7.0
Heat-pumps (small) [mio.]	1.1	14.3	16.3	6.5
Electric Vehicles [mio.]	0.6	25.2 – 31.7	34.8 - 37.3	14.1
DSM [GW]	1.2	5.0 - 7.2	8.9 - 12.0	7.0
Batteries [GW]	1.8	91.0	141.0 - 168.0	18.7

Market-based operation of PV-battery storage, charging of electric vehicles and heat pump; electrolysis and large-scale heat pumps and electrode boilers, almost no CHP restrictions

Topics under investigation and next steps

Consumer flexibility

- EVs, heat pumps and PV-battery systems are to be modeled to consider market price signals (approved report in German: "marktorientiert")
- How realisitc is this? How to adequately model such consumer incentives?
- Pool of flexibility is large and has quite likely a large influence on the market and grid simulations if fully utilized

Data centers

Old graph! But:

- Data centers very concentrated in Hessia (Frankfurt), Berlin-Brandenburg; some more in Bavaria and others
- 50 TWh additional load in all scenarios
- Waste heat not further considered
- Operation suitable for DSM and redispatch?

Electrolyzers

- Assumes hydrogen infrastructure (backbone) in all scenarios, large consumer survey revealed the location of many planned projects
- Where to place the rest? Currently, there are no monetary incentives for electrolysis operators to place plants in a "grid friendly" way
- BNetzA:

"(...) the remaining difference between the approved electrolysis capacity and the remaining capacity is to be located in a grid-friendly way (German: "netzdienlich"). Specifically, the electrolysers are placed at locations where they do not cause any additional bottlenecks in the power grid. These are presumably regions with a high feed-in from renewable energies in Northern Germany."

Conclusion

- New German network development plan will consider climate neutral energy system
- Electricity consumption doubles by 2045 compared to today, mostly covered by wind and PV
- Large influx of new consumers like PtX, data centers, EVs; very important to adequately model load curves and flexibility in a system that relies heavily on RES
- Energy scenarios are an essential tool for TSOs we are open to research cooperation
- Stay tuned for the full NEP document (beginning of 2023)!

Thank you! There is time for questions and discussion

contact: martin.klein@50hertz.com

Backup

Overview (1)

	-		cistang [off	1			
Energieträger	Referenz 2020*/2021	Szenario A 2037	Szenario B 2037	Szenario C 2037	Szenario A 2045	Szenario B 2045	Szenario C 2045
Kernenergie	4,1	0,0	0,0	0,0	0,0	0,0	0,0
Braunkohle	18,9	0,0	0,0	0,0	0,0	0,0	0,0
Steinkohle	19,0	0,0	0,0	0,0	0,0	0,0	0,0
Gaskraftwerke (zzgl. endogenem Zubau)	32,1	> 38,4	> 38,4	> 38,4	> 34,6	> 34,6	> 34,6
Öl	4,7	0,0	0,0	0,0	0,0	0,0	0,0
Pumpspeicher	9,8	11,1	11,1	11,1	11,1	11,1	11,1
sonstige konv. Erzeugung	4,3	1,0	1,0	1,0	1,0	1,0	1,0
Summe konventionelle Erzeugung	92,9	> 50,5	> 50,5	> 50,5	> 46,7	> 46,7	> 46,7
Wind Onshore	56,1	158,2	158,2	161,6	160,0	160,0	180,0
Wind Offshore	7,8	50,5	58,5	58,5	70,0	70,0	70,0
Photovoltaik	59,3	345,4	345,4	345,4	400,0	400,0	445,0
Biomasse	9,5	4,5	4,5	4,5	2,0	2,0	2,0
Wasserkraft	4,9	5,3	5,3	5,3	5,3	5,3	5,3
sonstige regenerative Erzeugung	1,1	1,0	1,0	1,0	1,0	1,0	1,0
Summe regenerative Erzeugung	138,7	564,9	572,9	576,3	638,3	638,3	703,3
Summe Erzeugung	231,6	615,7	623,7	627,1	685,3	685,3	750,3

Installierte Leistung [GW]

Overview (2)

Stromverbrauch [TWh]							
Nettostromverbrauch	478*	828	891	982	999	1025	1222
Bruttostromverbrauch	533*	899	961	1053	1079	1106	1303
		Treiber Sekto	orenkopplur	ıg			
Elektromobilität [Anzahl in Mio.]	1,2	25,2	31,7	31,7	34,8	37,3	37,3
Power-to-Heat [GW]	0,8*	12,6	16,1	22,0	14,9	20,4	27,0
Wärmepumpen (HH und GHD) [Anzahl in Mio.]	1,2	14,3	14,3	14,3	16,3	16,3	16,3
Elektrolyse [GW]	<0,1*	40,0	26,0	28,0	80,0	50,0	55,0
We	itere Speiche	r und nachfr	ageseitige F	lexibilitäten	[GW]		
PV-Batteriespeicher	1,3*	67,4	67,4	67,4	97,7	97,7	113,4
Großbatteriespeicher	0,5*	23,7	23,7	24,2	43,3	43,3	54,5
DSM (Industrie und GHD)	1,2*	5,0	7,2	7,2	8,9	12,0	12,0

Overview

[TWh]	Szenario A 2037	Szenario B 2037	Szenario C 2037	Szenario A 2045	Szenario B 2045	Szenario C 2045
Haushalte	156,9	156,9	183,2	143,4	143,4	185,7
lavon Geräte	104,0	104,0	114,3	90,4	90,4	114,3
lavon Wärmepumpen	52,9	52,9	68,9	53,0	53,0	71,4
GHD	168,0	168,0	185,9	161,5	161,5	186,3
lavon Rechenzentren	50,0	50,0	50,0	50,0	50,0	50,0
lavon Wärmepumpen	14,9	14,9	19,3	14,6	14,6	19,7
lavon Geräte	103,1	103,1	116,6	96,9	96,9	116,6
ndustrie	267,5	334,0	352,0	310,5	382,9	469,0
/erkehr	93,4	131,1	140,6	118,8	160,6	172,8
Elektrolyse	120,0	78,0	84,0	240,0	150,0	165,0
ernwärmeerzeugung	22,2	22,6	36,7	24,6	26,9	42,8
lavon Elektrodenheizer	4,0	8,0	8,0	5,5	11,0	11,0
lavon Großwärmepumpen	18,2	14,6	28,7	19,1	15,9	31,8
Nettostromverbrauch	828,0	890,6	982,4	998,8	1025,3	1221,6
/erteilernetzverluste	34,8	34,8	34,8	34,8	34,8	34,8
Übertragungsnetzverluste	30,0	30,0	30,0	40,0	40,0	40,0
Speicherverluste	3,7	3,8	4,1	4,7	5,3	5,3
Kraftwerkseigenbedarf	2,0	2,0	2,0	1,0	1,0	1,0
Bruttostromverbrauch	898,5	961,2	1053,3	1079,3	1106,4	1302,7

Martin Klein - TSO energoscenarios

Tabelle 10: Zusammenfassung des Stromverbrauchs in den Szenarien