

The Impact of Energy Security on a German Energy System by 2030 and 2045 and the Role of Heat Pumps

Christoph Kost Co-Authors: Markus Kaiser, Julian Brandes, Patrick Jürgens Dresden, Enerday, 30.09.2022

www.ise.fraunhofer.de

Topics of this talk

The Impact of Energy Security on a German Energy System by 2030 and 2045 and the Role of Heat Pumps

- Natural gas supply and prices have changed and will influence the energy transition.
- How do the transition pathways to 2045 change under the current developments?
- What is the impact of the increased heat pump development as one key solution?

The work on this paper was supported by the BMBF Ariadne project with sign 03SFK5D0.

Scope of the analysis and its model

Emission path to climate neutrality in Germany

Historische Daten und VJS: Vorjahreschätzung (VJS) der deutschen Treibhausgas-Emissionen für das Jahr 2020. Umweltbundesamt, 15.3.2021

Scope of the analysis and its model

Emission path to climate neutrality in Germany

Historische Daten und VJS: Vorjahreschätzung (VJS) der deutschen Treibhausgas-Emissionen für das Jahr 2020. Umweltbundesamt, 15.3.2021

REMod – Cross-sectoral energy system model

Core of the model

Yearly optimization and hourly simulation. Non-linear. All sectors, all hours from today to 2050 and 5 weather years, no grid.

All energy sources, converters, storages and consumption sectors. **Target function**: Minimization of total system costs **Boundary conditions**: Security of supply and CO₂ emissions

Decarbonisation per sector

Sector-coupled operating results

Fraunhofer ISE

Part 1: Energy System

The key number for the climate: CO2 emissions

CO2 emissions until 2045

Pre-2022 scenario vs Energysecurity scenario

- Scenario assumptions and parameter definition in the modeling group of the Ariadne project
- Key parameters of the Energysecurity scenario: limited availability of natural gas and higher prices
- CO2 budget was assumed to be identical

The key number for the climate: CO2 emissions

CO2 emissions until 2045

Pre-2022 scenario vs Energysecurity scenario

- Scenario assumptions and parameter definition in the modeling group of the Ariadne project
- Key parameters of the Energysecurity scenario: limited availability of natural gas and higher prices
- CO2 budget was assumed to be identical
- CO2 emissions path increased by 2030

CO2 emissions caused by energy consumption

Change in the fossil fuel consumption

Use of gas (CH4) and hard coal

* In 2045, the gas is climate neutral.

Reductions in the building plus more heat pumps and biomass Building sector until 2045

- Lower final energy demand due to higher renovation rate and higher prices/reduced consumption
- Reduction of natural gas in 2025 and 2030

Strong change of technology preferences in the short-term Building sector until 2045

- New gas boilers are strongly reduced
- Biogas and heat pump further increase
- However, strong heat pump market also without shock

Different choices in the industry

Final energy in Twh

Industry sector until 2045

- Energy consumption decreases strongly
- Coal extends it use in terms of time
- Hydrogen is then also less used as this also decreases dependencies

Energy demand in industry sector Pre-2022 scenario **Energysecurity scenario** 792 792 783 800 772 772 724 722 726 712 705 700 655 624 615 600 500 400 300 200 100 0 2023 2045 2030 2020 2025 2030 2035 2040 2020 2023 2025 2035 2040 2045 Year Electricity Hydrogen Environmental Heat **District Heat** Nat Gas Biomass Coal Solar Heat Oil

Different choices in the industry

Industry sector until 2045

 Coal and biomass with higher share in the technologies

Findings of part 1

- > Short-term and long-term transition pathways are changed.
- > Price and availability of natural gas lead to different consequences in each sector
- > Measures for climate protection (Klimaschutzmaßnahmen) have to take into account these findings immediately

Part 2: Operation of heat pumps

Another Aspect on energy security: Electricity demand of heat pumps

All scenarios show high increase of heat pumps as best solution in building sector

- Do heat pumps increase the demand for electricity? -> YES
- Do heat pumps increase the maximum load in the electricity system? -> YES
- Are heat pumps operated with electricity from fossil fuels as they are operated in cold seasons?

Hourly CO2 factor of electricity and heat pumps

Year 2030

- Do heat pumps increase the demand for electricity? -> YES
- Do heat pumps increase the maximum load in the electricity system? -> YES
- Are heat pumps operated with electricity from fossil fuels as they are operated in cold seasons?

Hourly CO2 factor of electricity and heat pumps

September

Different weather years are used!

Hourly CO2 factor of electricity and heat pumps December

Different weather years are used!

Thank you for your kind attention!

Christoph Kost

Fraunhofer ISE Heidenhofstraße 2 79110 Freiburg www.ise.fraunhofer.de **Fraunhofer** ISE

The work on this paper was supported by the BMBF Ariadne project with sign 03SFK5D0.