

ESTIMATING GLOBAL PRODUCTION AND SUPPLY COSTS FOR GREEN HYDROGEN AND HYDROGEN-BASED GREEN ENERGY COMMODITIES

ENERDAY 2022 - 16th international conference on energy economics and technology

Michael Moritz, Max Schönfisch, Simon Schulte

Energiewirtschaftliches Institut an der Universität zu Köln (EWI) gGmbH | 30.09.2022

Agenda

- Motivation & Methodology
- 2 Transport costs
- Case Study: Green ammonia for Germany produce or import?

Motivation & Methodology

© EWI 2022

3

Motivation

Provide global and country-specific...

Production costs

Potentials

Supply costs

Comparability

Cost composition

Data basis

... for green hydrogen and hydrogen-abased green energy commodities

Country-specific assumptions

Hourly profiles

Potentials

WACC

Production cost estimation PV min{Production cost} Wind onshore Wind offshore Capacity Operation Electrolyzer H₂-Storage H₂-Conversion **Production cost** DAC

30.09.2022

EWI Global PtX Cost Tool

Customizable analysis of global and country-specific production and supply costs for green hydrogen and hydrogen-based green energy commodities

General Control Panel	
	Orange cells request input
CO ₂ production cost calculation	Greenfield via DAC
Custom CO ₂ costs in \$/t CO ₂	450
Ammonia use case	Direct use
Prioritize power generation in origin	yes
countries	

https://www.ewi.unikoeln.de/en/tools/global es-ptx-produktions-undimportkostentool/

10.10.2022

Transport Control Panel	
General	
Transport infrastructure	greenfield
Pipeline	
H ₂ pipeline cost scenario	retrofitted
WACC (%)	8%
Economic lifetime (a)	55
Onshore vs offshore pipeline cost factor	1.96
Shipping (Expert)	
Freight rate (LNG) (\$/d)	48800
Freight rate (Ammonia) (\$/d)	50000
Freight rate (Liquids) (\$/d)	14000
Port entry/exit fees (Ammonia) (\$/t)	0.58
Port entry/exit fees (Liquids) (\$/t)	0.58
Port handling fees (Ammonia) (\$/t)	1.59
Port handling fees (Liquids) (\$/t)	0.49
WACC (LH ₂ tanker) (%)	8%
Economic lifetime (LH ₂ tanker) (a)	30
Liquofaction/Regarification/Funcet	
Liquefaction/Regasification (Expert)	20
Economic lifetime (LH ₂ /LNG liquefaction) (a)	30
Economic lifetime (LH ₂ regasification) (a)	30

Changes to customize your scenario should only be made in the orange boxes in the "control panel", "global" and

"country-specific" sheets.

Transport costs

Comparison of gaseous and liquid commodities

Pipeline Hydrogen

Maritime Hydrogen

Comparison of gaseous and liquid commodities

Comparison of gaseous and liquid commodities

Comparison of gaseous and liquid commodities

Comparison of gaseous and liquid commodities

Comparison Ammonia to gasoues Commodities

Case Study: Green ammonia for Germany

- produce or import?

GLOBAL SUPPLY COST ANALYSIS IN 2030

Supply costs relative to the production costs in Germany

Hydrogen - Maritime transport only

Hydrogen - Maritime transport & pipeline transport via retrofitted NG pipelines

GLOBAL SUPPLY COST ANALYSIS IN 2030

Supply costs relative to the production costs in Germany

Ammonia

Hydrogen - Maritime transport & pipeline transport via retrofitted NG pipelines

GREEN AMMONIA SUPPLY OPTIONS FOR GERMANY Supply costs by world region

Average supply costs of countries from which import costs are lower than domestic production cost in Germany

¹ IHS Markit (2020): Levelized cost of low-carbon ammonia and methanol production - V1.0

KONTAKT

Michael Moritz

Michael.moritz@ewi.uni-koeln.de

+49 (0)221 277 29 202

Energiewirtschaftliches Institut an der Universität zu Köln (EWI) gGmbH