Summary

Benefits of a Hydrogen Network in Europe with Repurposed Gas Pipelines

Fabian Neumann, Elisabeth Zeyen, Marta Victoria, Tom Brown

f.neumann@tu-berlin.de Department of Digital Transformation in Energy Systems Technical University of Berlin, Germany

ENERDAY 2022, Dresden, Germany

September 29, 2022

Summary

Sensitivity: Imports

Large-scale electrification to meet CO_2 targets collides with low acceptance for power grid and onshore wind

Can electrolytic hydrogen and a hydrogen pipeline network help?

Can we substitute for power grid expansion by producing **electrolytic hydrogen** near remote high-yield generation sites and transporting it to demand clusters through a new or repurposed **hydrogen pipeline network**?

Source: European Hydrogen Backbone (2022), https: //gasforclimate2050.eu/wp-content/uploads/2022/04/ EHB-A-European-hydrogen-infrastructure-vision-covering-28-commerce

Modelling challenges

Challenge 1: Need spatial resolution to see grid bottlenecks & infrastructure trade-offs.

Challenge 2: Need to co-optimise balancing solutions with spatio-temporal variability.

Model

What is PyPSA-Eur-Sec? - Open Sector-Coupled Model of Europe

Model for Europe with all energy flows...

...and bottlenecks in energy networks...

... and temporal variability in demand and supply.

There are difficult periods in winter with **low** wind and solar, **high** space heating demand **low** air temperatures, which are bad for air-sourced heat pump performance

Gas network with H_2 retrofitting option and cavern storage potentials

Scenarios for a European energy system with net-zero CO₂ emissions

- Couple all energy sectors (power, heat, transport, industry, agriculture, international aviation & shipping)
- Cluster to 181 regions, 3-hourly time series
- Reduce net CO₂ emissions to zero
- Technology assumptions for 2030 (DEA)
- Europe energy self-sufficient more later!
- CO₂ sequestration limited to 200 Mt/a
- Vary allowed electricity and hydrogen network expansion

Least-cost solution - power and hydrogen network expansion

What if we restrict electricity grid reinforcements?

A more restricted solution – no power grid expansion

How much more expensive is this solution?

Benefit of hydrogen network infrastructure

- Cost of hydrogen network: €6-8 billion per vear
- Net benefit is much higher: €31-46 billion per year
- Power grid brings more benefit: €47-62 billion per year
- Hydrogen network can only partially substitute
- Systems without any grid expansion are also feasible

Electricity and hydrogen grid expansion and level of retrofitting

- Hydrogen network retrofitted
- Hydrogen network new

- Up to 66% of hydrogen backbone can repurpose existing gas network
- Up to a third of the gas transmisison network is retrofitted
- If grid expansion is disallowed, H₂ grid transmits 3x more energy than AC grid

Comparison to European Hydrogen Backbone

58-66% retrofitted

Comparison to European Hydrogen Backbone

58-66% retrofitted 342-422 TWkm

Comparison to European Hydrogen Backbone

58-66% retrofitted 342-422 TWkm

69% retrofitted 309 TWkm

Summary

Limited onshore wind potentials shuffle hydrogen exporting countries

With onshore:

British Isles & North Sea dominate H_2 production

Without onshore:

Southern Europe becomes larger exporter of H₂

Imports of energy into Europe diminish hydrogen network benefit

- So far we looked at scenarios for self-sufficient energy supply
- But when H₂ and derivatives are imported (shipping, aviation, industry, trucks), hydrogen network benefit drops to 1%.
- Residual benefit of €5 billion per year comes from transporting energy to fuel cell CHPs to renewable-poor and grid-poor inner-European nodes.

Imports of energy into Europe diminish hydrogen network benefit

- So far we looked at scenarios for self-sufficient energy supply
- But when H₂ and derivatives are imported (shipping, aviation, industry, trucks), hydrogen network benefit drops to 1%.
- Residual benefit of €5 billion per year comes from transporting energy to fuel cell CHPs to renewable-poor and grid-poor inner-European nodes.

Summary

Conclusion

- hydrogen backbone reduces system costs by up to 6%, highest without grid expansion
- between 58-66% of hydrogen backbone uses retrofitted gas network pipelines
- **benefit of power grid expansion is higher** than of hydrogen network (6% vs 8%)
- no network expansion also feasible, but together reduce costs by up to 12%
- All results depend strongly on assumptions and modelling approach e.g. volume of energy imports, onshore wind potentials, options for industry relocation

Meta

Unless otherwise stated, the graphics and text are Copyright \bigcirc FN, EZ, MV, TB, 2022.

This work is licensed under a Creative Commons "Attribution 4.0 International" license.

Find the slides:

https://neumann.fyi/files/enerday-spatial-sector.pdf

Find the preprint: https://arxiv.org/abs/2207.05816

Find the open energy system model:

https://github.com/pypsa/pypsa-eur-sec

Send an email:

18 @@

mailto:f.neumann@tu-berlin.de

Model

SI

All cases: strong regional imbalance between generation and demand

- left: electricity and H₂ network expansion
- surplus and deficits up to 200 TWh
- Roughly 60% of the hydrogen demand in regions producing less than 1% of the total hydrogen supply

Future work

- **pathway** of investments now-2050 (with technological learning)
- more endogenous model decisions for fuel and process switching in industry
- comparison of local production with import of synfuels from outside Europe
- extend offshore wind potentials with floating wind and wake effects
- spatial optimisation of CO₂ transport and sequestration infrastructure

SI

Final Energy Consumption by Carrier

Industry: Process Switching and Carbon Management

Iron & Steel	70% from scrap, rest from H_2 -DRI + EAF
Aluminium	80% recycling; methane for high-enthalpy heat
Cement	Solid biomass; capture of CO ₂ emissions
Ceramics	Electrification
Ammonia	Clean hydrogen
Plastics	55% recycling and synthetic naphtha
Other industry	Electrification; process heat from biomass
Shipping	Liquid hydrogen
Aviation	Kerosene from Fischer-Tropsch

Carbon is tracked through system: up to 90% of industrial emissions can be captured; biomass; direct air capture (DAC); sequestration limited to 200 MtCO₂/a; carbon in plastics releases into atmosphere

Hydrogen Backbone Industry Sector – Demand and Process Emissions

Benefit of high onshore wind potentials

• costs rise by $\approx \in 104$ bn/a (12%) as we eliminate onshore wind (25% grid expansion)

■ rise drops to $\approx \in 64$ bn/a (7%) if we allow a quarter of the technical potential

Energy Sankey Diagram – TWh/a

Carbon Sankey Diagram – MtCO2/a

Between full and no power grid expansion

Berlin

SI

Growing Constraints on Energy System Design

Summary

Nodal Prices Electricity

only power grid expansion

only hydrogen network expansion

Summary

Nodal Prices Hydrogen

only power grid expansion

only hydrogen network expansion

EHB

SI

Electricity Net Flows

EHB

SI

Hydrogen Net Flows

Utilisation Patterns

100

60

40

20

0

Average Loading / Pipe Capacity [%]

SI

Network Loading

Time Series Electricity Balance

- little firm capacity (100-200 GW)
- CHP and OCGT power backup

Time Series Heat Balance

- strong seasonality of heat demand
- waste heat recovery from synfuel production in district heating

Time Series Hydrogen Balance

- most hydrogen demand for feedstock not end-use
- green hydrogen preferred over blue hydrogen due to limited sequestration potentials

Time Series Methane Balance

Time Series Electricity Balance – February

Time Series Electricity Balance – July

Demand Maps – Electricity and Hydrogen

Demand Maps – Methane and Liquid Hydrocarbons

Demand Maps – Heat and Solid Biomass

