

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH University of Science and Technology

Modelling district heating systems transition towards climate neutrality, case study of Poland

Maciej Raczyński Artur Wyrwa

05.05.2023 Dresden

Agenda

- District Heating Systems
- TIMES-HEAT-PL Model
- Results
- Conclusions & Summary

- District Heating Systems
- TIMES-HEAT-PL Model
- Results
- Conclusions

5 Final Consumption of Derived Heat in

the EU-27 in 2020 [PJ]

EU27 sectoral brakdown	PJ
Final consumption of derive heat	1974.8
of which	
Industry sector	613.4
Commercial and public services	354.5
Households	854.2

1 Derived Heat Consumption Trend in

Source: Eurostat, NRG_CB_H

1 District Heat production in Poland in 2020 by fuel [PJ]

Regulations resulting from energy policies:

- Fit for 55:
 - Energy Efficiency Directive
- Renewable Energy Directive will make carbon-based systems inefficient and they will have to undergo a deep transformation

Size of District Heating Systems (DHS)

- District Heating Systems
- TIMES-HEAT-PL Model
- Results
- Conclusions & Summary

TIMES model generator

- Developed by IEA-ETSAP
- Linear programming, optimisation model
- Bottom-up, technology rich approach
- Minimizes total discounted system costs
 - Subject to user constraints

JRC uses its TIMES-PAN-EU to evaluate European energy polices

TIMES-HEAT-PL – general concept

- Multi-regional model each DHS is treated as a separate region
- Use of geospatial data (GIS) to better address local conditions and limitations
- Systems divided into 5 size categories (<5, 5-20, 20-50, 50-300, >300 MW)
- Sets of new technologies:
 - Tied to the system size
 - Suited to their operation characteristics o (base, medium, peak load, all year)
 - 50 new technologies in total

¹ TIMES-HEAT-PL — as a part of modelling €

system

Atmospheric dispersion and deposition of pollutants

District Heating Systems included in

TIMES-HEAT-PL

individual district heating systems in total

TIMES-HEAT-PL — examples of geospatial data used

Natural gas availability

Heat load duration curve estimated using the Raiss equation:

Agenda

- District Heating Systems
- TIMES-HEAT-PL Model
- Results
- Conclusions & Summary

Ordered Heat Load Duration Curve (2050)

Small System ~16 MW_{th}

Heat production over a year 2050 Small system ~16 MW_{th}

Ordered Heat Load Duration Curve (2050) Large System ~900 MW_{th}

Timeslice

Heat production by fuel in Poland [PJ]

- District Heating Systems
- TIMES-HEAT-PL Model
- Results
- Conclusions & Summary

Conclusions & Summary

- The model developed chooses technologies appropriate for the area (base, mid, peak) of the ordered heat load duration curve
- Takes into account local (GIS) and national constraints
- As part of a larger modelling system, it allows the integration of district heating into the country's energy system
- The model is intended to evaluate the paths of technological transformation of district heating systems in Poland and to estimate the transformation cost
- It is important to develop a set of heat generation technologies that meet the requirements of energy policies (efficient heating system definition)
- Many issues require further work, e.g. H₂, P2H, SMRs, RES, waste heat, storage; investments on demand side & heat network infrastructure (n_{th} generation), to reflect them in the model as close to reality as possible

Thank You

Contact Details

FSMLAB

Maciej Raczyński maciej.raczynski@agh.edu.pl

Artur Wyrwa awyrwa@agh.edu.pl

AGH University of Science and Technology, Krakow, Poland http://home.agh.edu.pl/esmlab