

Uncertainty in Energy System Modeling

Lessons from case studies with GENeSYS-MOD

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 835896

Technische Universität Berlin **perlin**

GENESYS

We deal with a lot of uncertainty in energy system modeling

- We face a lot of uncertainty in the energy system: past, present, and future
- Just to name a few:
 - Cost developments of batteries
 - Will nuclear fusion ever become viable?
 - How does the geopolitical landscape in 25 years look like?
- Different uncertainties require different methodologies to address them
- The question remains: In how far can we trust results from (deterministic) energy system models?

Types of uncertainty in modeling

berlin

Universität Berlin

GENeSYS-MOD...

- ... based on OSeMOSYS and developed since 2016
- ...publicly available with model, data, and manual¹
- Results in this presentation (mainly) based on European and German case-studies

ENERDAY 2023 | Dresden | 05.05.2023

Open-science as a major cornerstone

- Goes beyond open-source data, source code, methodology, publications, etc. should all be publicly available
- Work benefits from higher exposure, possibility to get validated, and others can build upon it
- Most crucially: adequate result communication requires the possibility to replicate not only the results but also methodology and assumptions
- However: barriers are still high when trying to use other developer's frameworks

Open-science as a major cornerstone

Key takeaways and messages

• Accounting for uncertainty adds layers of robustness to analysis and is crucial when communicating these results to policy and decision makers

- No-regret options:
 - No new fossil fuel capacities required, they rather put the decarbonization at risk
 - No room for delayed action
 - Electrification is key, hydrogen most likely only in a complementary role
 - Focus on energy demand reduction measures in the long-term, carbon price in the medium-term

Energy demand important factor in decarbonization's success

- Reducing energy demand shows the strongest effect on many indicators like emissions, installed capacities and system costs
- These effects are most pronounced in the long-term (2040-2050)
- While efficiency improvements can play a role in reducing energy demand, sufficiency proves to be more effective but also more difficult to target as a policy or decision maker

Energy demand important factor in decarbonization's success

Carbon price effective, but mostly in the medium-term

Additional fossil capacity expansions most likely end up being stranded

- Short-sighted decision making can put the decarbonization's success at risk
- Case-study focusing on Europe with three scenarios, simulating myopic foresight
- If long-term requirements and developments are ignored, significant stranded assets as a result
- Of course we face short-term problems, especially nowadays but longterm goal should has to be considered when solving them

Additional fossil capacity expansions most likely end up being stranded

Electrification is key, cheap hydrogen can play an important role in certain industries

- Cheap and available hydrogen will play a role mainly in industry, while recent trends in transportation showcase a declining role
- A limited reliance on hydrogen will also result in reduced import dependency for many countries
- Including stochasticity into energy system modeling and imperfect foresight can lead to substantially increased requirements on the system: in terms of overall costs, capacity levels, etc.

Electrification is key, cheap hydrogen can play an important role in certain industries

Burandt, Thorsten (2021): *"Analyzing the necessity of hydrogen imports for netzero emission scenarios in Japan"* in Applied Energy 298 (2021); DOI: <u>https://doi.org/10.1016/j.apenergy.2021.117265</u>

ENERDAY 2023 | Dresden | 05.05.2023

Key takeaways and messages

Thank you for your attention!

Dr. Karlo Hainsch k.hainsch@tu-berlin.de

• Accounting for uncertainty adds layers of robustness to analysis and is crucial when communicating these results to policy and decision makers

- No-regret options:
 - No new fossil fuel capacities required, they rather put the decarbonization at risk
 - No room for delayed action
 - Electrification is key, hydrogen most likely only in a complementary role
 - Focus on energy demand reduction measures in the long-term, carbon price in the medium-term

