Energy Imports and Infrastructure in a Climate-Neutral European Energy System

Johannes Hampp, Tom Brown, Fabian Neumann

f.neumann@tu-berlin.de Department of Digital Transformation in Energy Systems Technical University of Berlin, Germany

ENERDAY 2023, Dresden, Germany

May 5, 2023

Scenarios

Introduction

Energy infrastructure to achieve net-zero does not always meet high levels of acceptance.

Other parts of the world have cheap and abundant renewables to offer in global markets.

Trade-offs between full self-sufficiency and wide-ranging energy imports from outside Europe:

- cost reductions through energy imports?
- infrastructure needs inside Europe?

- from where to import?
- to where to import?

Coupling of a global supply chain model with open all-sector European energy model.

PyPSA-Eur - An open sector-coupled energy system model of Europe

...and bottlenecks in energy networks...

... and temporal variability in demand and supply.

There are difficult periods in winter with **low** wind and solar, **high** space heating demand **low** air temperatures, which are bad for air-sourced heat pump performance

Introduction	PyPSA-Eur	Import Options	Scenarios	Results	Conclusion
Gas tra	nsmission net	twork with LN	G terminals	and pipeli	ne entrypoints
			eo 20 Cas Pipeline Capacity [GW]	 incorporate European network fre project int supplement existing a terminals 	e open dataset of gas transmission om SciGRID_gas o PyPSA-Eur t dataset with nd planned LNG from www.gem.wiki
عمم ک	L A	1 Jon			Technische

Model of global green energy supply chains - exporting regions

16 exporting regions

Potential export carriers

- hydrogen (pipeline, ship)
- methane (pipeline, ship)
- ammonia (ship)
- liquid hydrocarbons (e.g. Fischer-Tropsch) (ship)
- electricity (HVDC)

Import corridors into Europe

- 7 sea routes (Atlantic, North Sea, Baltic Sea, Mediterranean)
- 6 pipeline/HVDC routes (Southern/Eastern Europe)

Introduction

Model of global green energy supply chains - supply cost curves

hourly solar PV, on-/offshore wind subject to eligible land grouped into classes for regional supply curves – domestic demand

Source: https://github.com/euronion/trace, see also IRENA Global Hydrogen Trade Outlook

Locations and costs for imports vary by energy carrier

electricity imports endogenously optimised, gaseous carrier imports where LNG terminals and pipelines exist

NH₃ CH₄ (LNG) Electricity 85 €/MWh [AR] 88-90 €/MWh [AR] 37-57 €/MWh Fischer-Tropsch CH₄ (pipeline) H₂ (pipeline/ship))

115 €/MWh [AR] 100 €/MWh [DZ] ← 55-88 €/MWh

 $\begin{array}{l} \leftarrow \text{ single EU node} \\ \leftarrow \text{ spatially resolved} \end{array}$

Import scenarios for a European system with net-zero CO₂ emissions

- couple all energy sectors (power, heat, transport, industry, feedstocks, agriculture, international aviation & shipping)
- reduce net CO₂ emissions to zero
- cluster to 128 regions, 3-hourly timesteps
- power (x2), gas and hydrogen networks
- technology assumptions for 2030 (DEA)
- CO₂ sequestration below 200 MtCO₂/a
- vary import volumes and carriers

Preliminary: Cost reduction by imports depends on available options

- cost benefit of energy imports limited to 7%
- half of the benefit can be achieved with exclusive hydrogen imports, but requires a lot of infrastructure (later)
- a cost reduction by 5% can be achieved with exclusive electricity imports
- up to 30% of system cost is spent on energy imports

Preliminary: System cost configurations with increasing energy imports

 \rightarrow cost-optimal import volume 3750 TWh (of which 59% electricity, 39% hydrogen)

 \rightarrow half of the 7% cost-benefit can be achieved with imports below 1000~TWh

 \rightarrow solution space is very flat in a wide range between imports of 0 and 8000 TWh

11 @

[>]tX investments [mn€

Preliminary: European **self-sufficient** energy supply without imports

- large PtX production within Europe to cover demands for steel, plastics, kerosene etc.
- concentrated in Southern Europe and the British Isles

electricity grid reinforcements focused mostly in northwest Europe

12 @

1000

800

600

400

200

otX investments

Preliminary: European energy supply with imports and **flexible** carrier

- much less PtX production owing to imported hydrogen
- some power grid expansion diverted to South Europe to absorb inbound power
- electricity imports distribute evenly across exporting countries to facilitate grid integration
- both wind and solar in exporting countries for seasonal balancing

Increased energy imports change the role of hydrogen network...

... from distributing hydrogen from North Sea to transporting imports from North-Africa

without imports

with imports

Regional energy imbalance reinforced by import options...

... but overall less energy infrastructure (wind, solar, grids) inside Europe.

without imports

with imports

Cost sensitivity with restricted import carrier choices

Preliminary Conclusions

PvPSA-Eur

- Imports of green energy reduce cost of net-zero European energy system by 7%.
- **European infrastructure requirements** depend on strategy taken on energy imports.
- Other factors than pure costs might rather drive import strategy: geopolitical considerations, building simple & easy-to-implement systems, reuse of existing infrastructure, resilience of supply chains, technology risk, diversification, and land usage.
- All results depend strongly on assumptions: more work on import cost sensitivities, losses in European energy networks, industry relocation, and material imports (like green steel or sponge iron).

Import Options

Scenarios

Conclusion

Contact, License, Additional Resources

Unless otherwise stated, the graphics and text are Copyright \bigodot J.H., T.B., F.N. 2022-2023.

This work is licensed under a Creative Commons "Attribution 4.0 International" license.

CC I

Find the slides:

https://neumann.fyi/files/enerday-import-benefits.pdf

Find out more about PyPSA: https://pypsa.org

Find the open energy system model: https://github.com/pypsa/pypsa-eur

Send an email:

(cc)()

mailto:f.neumann@tu-berlin.de

Spending on hydrogen pipelines depends on imported energy carriers

any carrier
 -- only H₂
 -- only liquid fuels
 -- only cH₄

 demand for hydrogen network decreases when more H₂ derivatives are imported directly

 demand for hydrogen network increases when more H₂ is imported

SI

Electricity imports lead to more South-North power transmission

without imports

with imports

Industry: Process and Fuel Switching & Carbon Management

Iron & Steel	70% from scrap, rest from H_2 -DRI + EAF
Aluminium	80% recycling; methane for high-enthalpy heat
Cement	Solid biomass; capture of CO ₂ emissions
Ceramics	Electrification
Ammonia	Clean hydrogen
Plastics	55% recycling and synthetic naphtha
Other industry	Electrification; process heat from biomass
Shipping	Liquid hydrogen
Aviation	Kerosene from Fischer-Tropsch

Carbon is tracked through system: up to 90% of industrial emissions can be captured; biomass; direct air capture (DAC); sequestration limited to 200 MtCO₂/a; carbon in plastics releases into atmosphere

Final Energy Consumption by Carrier

SI

Industry Sector - Demand and Process Emissions

Scenarios

Technology Choices: Exogenous versus Endogenous

Exogenous assumptions (modeller chooses):

- energy services demand
- electricity for road transport
- kerosene for aviation
- hydrogen for shipping
- steel production in 2050: H_2 -DRI + EAF
- electrification & recycling in industry
- district heating shares

Endogenous assumptions (model optimises):

- electricity generation fleet
- transmission reinforcement
- space and water heating technologies
- all P2X infrastructure
- V2G and other demand-side management
- supply of process heat for industry
- carbon capture

Find most cost-effective combination of generation, converison, storage and transmission:

$$\mathsf{Min} \begin{bmatrix} \mathsf{Yearly} \\ \mathsf{system \ costs} \end{bmatrix} = \mathsf{Min} \begin{bmatrix} \sum_{r} \begin{pmatrix} \mathsf{Annualised} \\ \mathsf{capital \ costs} \end{pmatrix} + \sum_{r,t} \begin{pmatrix} \mathsf{Operating} \\ \mathsf{costs} \end{pmatrix} \end{bmatrix}$$

subject to

- meeting energy demand in each region r and time t for each carrier
- transmission constraints between regions and (linearised) power flow
- wind, solar, hydro availability time series $\forall r, t$
- geographical potentials for renewables
- emission reduction targets

In short: **mostly-greenfield** investment optimisation, multi-period (storage) with LPF. Optimise transmission, generation, conversion and storage **jointly** \rightarrow strongly interacting.

Electricity imports lower prices as better resources become available

without imports

with imports

25 💿 🗊

SI

Preliminary: European energy supply with exclusive hydrogen imports

Technische Universität Berlin

^otX investments

Preliminary: European energy supply with exclusive electricity imports

- exclusive electricity exports entail massive (!) cross-continental HVDC connections
- PtX production is shifted to importing European nodes as power grid capacity is limited

Import Options

Scenarios

Conclusion

SL

Import Options

Scenarios

Conclusion

SL