eurac research

Unlocking the future: Exploring the untapped potential of renewables and flexibility options in reducing CO₂ emissions - What will it cost?

Steffi Misconel

Research Associate | EURAC Research | Institute for Renewable Energy | Bolzano, Italy PhD Candidate | TU Dresden | Chair of Energy Economics | Dresden, Germany

ENERDAY 2023 - 17th International Conference on Energy Economics and Technology | 05 May 2023 | Dresden Parallel Session 3 (14:00 – 15:00) | Energy system modeling III

Paper under peer-review process

- Submitted to Energy Strategy Reviews
- Under review since March 2023

Highlights

- High-resolution marginal CO₂ abatement cost curve (MACC) approach for German sector-coupled energy system in 2030/45.
- Findings suggest early-phase vRES installation, later sector coupling, and storage.
- Ground-mounted PV, onshore wind, and PtH are the most cost-effective measures.
- Policy suggestions include **incentives for vRES**, **BEV**, investments in **sector coupling**.

CO2 reduction potentials and abatement costs of

renewables and flexibility options - A linear optimization

Article

eurac research

Content

Introduction to the importance of identifying CO₂ reduction potentials and costs

Method and **scenario** framework for the assessment of step-wise marginal CO₂ abatement cost curve

Results on CO₂ reduction costs and potentials of vRES and flexibility options

Conclusions and **policy implications**

Introduction to the importance of identifying CO₂ reduction potentials and costs

Meeting Paris Agreement and European Green Deal targets require analyzing methods to switch to renewable energy and alternative decarbonization options

Problem

- Strategic planning needs evaluation of cost-effective decarbonization alternatives
- Marginal CO₂ abatement cost curves (MACCs) are useful but most approaches neglect interactions between technologies and lack high temporal, cross-sectoral, and techno-economic resolution

Solution

7	Π
I/	

- Integration of a step-wise MAC curve into a high-resolution model-based approach (linear optimization) based on a case study for the German sector-coupled energy system for 2030 and 2045
- Approach evaluates CO₂ abatement costs and emission reduction potentials of vRES and flexibility options, as well as intertemporal and intersectoral interactions

The analysis supplements existing research and can assist policymakers in identifying appropriate measures to attain emission reduction targets!

Objectives

Create a modeling methodology that utilizes a robust optimization process to identify MAC curves.

Integrate high temporal, sectoral, and **techno-economic resolution** into a MAC curve approach, which will be incorporated into the **linear optimization model ELTRAMOD**.

Determine the **optimal order of investments** in renewables and flexibility options that minimizes cost, in order to establish **least-cost decarbonization pathways**.

Assess the **CO₂ reduction potentials** and **CO₂ abatement costs (CCA)** associated with renewables and flexibility options for the German energy transition in 2030 and 2045.

Creating insights regarding the most **cost-effective decarbonization strategies** to support **policymakers**, the research community, and other decision-makers

Method and scenario framework for the assessment of step-wise marginal CO₂ abatement cost curve

1 Introduction 2 Method 3 Results

Assessing marginal CO₂ abatement cost curves with the electricity system model ELTRAMOD MARGINAL CO₂ ABATEMENT COST CURVE

MODEL INPUT

- Technology-specific power plant characteristics (e.g., capacities, fuel types, emission factors, etc.)
- Economic parameter (e.g., loadchange costs, etc.)
- European transmission capacity (NTC)
- **RES** capacities and hourly generation profiles
- Fuel and CO₂ certificate prices
- 17 conv. gen. technologies
- Storage systems, DSM processes, heat pumps, electrolyzers, battery electric vehicles (incl. technoeconomic parameters)
- Hourly electricity demand
- Hourly process load and charging availability profile for BEV
- Hourly heat demand profile
- Hydrogen demand for power and industry sector

MODEL OUTPUT

- Cost-minimal (optimal) dispatch of power plants and flexibility options
- Total system costs / dispatch costs
- CO₂ emissions / CO₂ reduction
- Costs of carbon abatement (CCA)

ource:

Prina

Scenario framework and implementation of decarbonization measures and sector coupling

	Decarbonization measure	Unit	2030		2045					
			dv_m^{REF}	dv_m^{MAX}	I _m	IT _m	dv_m^{REF}	dv_m^{MAX}	I _m	IT _m
	PV ground-mounted	[GW]	35.2	140	1.5	~67	140	280	1.5	~91
	PV rooftop	[GW]	14.8	60	1.5	~29	60	120	1.5	~39
	Wind onshore	[GW]	52.5	94	0.6	~71	94	160	0.6	~114
PIC	Wind offshore	[GW]	7.6	30	0.4	~53	30	70	0.4	~96
	Power-to-H ₂ -to-power (electrolyzer, H ₂ tanks, fuel cells)	[GW] [GWh]	0	10	0.9	~10	10	50	0.9	~43
Ē	Battery lithium-ion	[GWh]	0	20	1.0	20	20	97.7	1.0	~77
	Battery redox-flow	[GWh]	0	20	1.0	20	20	43.3	1.0	~23
₩ □ ₩□	Power-to-heat (heat pump, heat storage)	[GW] [GWh]	0	20	0.3	~62	20	51.7	0.3	~98
	Battery electric vehicles (private/fleet passenger cars)	[Mio.]	0	15	0.067	~224	15	32	0.067	~137
	Max. number of MAC curve steps /	['] dispatch mo	del runs			~556				~718
	Net el. demand*	[TWh]		63	30			10)25	
	Gross el. demand**	[TWh]	669			1106				
	Total RES generation	[TWh]	568			1,031				
	RES share (net)	[-]	~90%			~100%				
	RES share (gross)	[-]		~8	5%			~9	3%	
		a Disease and a large start.	- the set of a set of a							

1 Introduction 2 Method 3 Results

*with sector coupling **with sector coupling and electricity losses

Further assumptions

- Input based on German Grid Development Plan (NEP 2023/2037) for 2030/2045
- Germany is considered an "island" (no electricity exchange flows between DE and neighboring countries)
- Model-endogenous investments in H₂ power plants were calculated in the previous model run (40 GW₂₀₃₀ / 49 GW₂₀₄₅)

Results on CO₂ reduction potentials and costs of vRES and flexibility options

Comparison of MAC curves, cost-effectiveness, and interplay of decarbonization measures between 2030 and 2045

Most costeffective decarbonization measures are ground-mounted PV, wind onshore (2030), and PtH with the low and even negative CCA

•

Wind offshore, • PtH₂tP, batteries are the most costintensive measures, which are shifted to a later stage of the MACC (as BEV with storage capacity can be used as a more cost-effective solution in the short term)

eurac research

1 Introduction 2 Method 3 Results

Comparison of CO₂ reduction potentials per decarbonization measure for Germany between 2030 and 2045

- Decreasing CO₂ reduction potential for almost all considered measures from 2030 to 2045, <u>despite</u> for BEV and PtH
- **PtH₂tP**, wind **offshore**/wind **onshore** have the **highest CO₂ reduction potential** (median)
- With a higher RES share in **2045**, **PtH increase CO₂ reduction** potential (median)

1 Introduction 2 Method 3 Results 4 Co

13

Comparison of CO₂ abatement costs for different decarbonization measures between 2030 and 2045

- Most decarbonization measures will increase CCA by 2045, <u>except</u> for PtH and groundmounted PV with median CCA
- Battery storage, rooftop PV, and offshore wind become significantly less costeffective with reduced CO₂ reduction potential, resulting in high CCA values

eurac research

1 Introduction 2 Method 3 Results

Comparison of hourly utilization of decarbonization

measures between 2030 and 2045

- High vRES share (≥80%), storage solutions such as BEV with bidirectional charging and PtH₂tP substitute conv.
 electricity generation
- Integration of vRES, BEV with bidirectional charging and PtH₂tP lower short-term electricity generation costs (a proxy for wholesale el. prices)
- However, even in 2045
 H₂ power plants are needed as backup capacities in times of high residual load

eurac research

Conclusions

Conclusions on modeling results

MAC curves provide not only the **'best' energy mix** for **decarbonization strategies** but also information on the **least-cost sequential order** for decarbonization measures

- Prioritizing **vRES** in the **initial stage** of decarbonization is more cost-effective
- Sector-coupling measures improve vRES integration in a later stage
- By **2030**, ground-mounted **PV**, **onshore wind**, and **PtH** are the most cost-effective decarbonization measures
- By **2045**, ground-mounted **PV**, **BEV** with controlled bi-directional charging, and **PtH** are cost-effective decarbonization measures
- PtH₂tP has the highest potential for CO₂ reduction but is also one of the most cost-intensive measures
- **Curtailment increases** with rising vRES, despite sector-coupling and storage technologies, leading to the **need** for carbon-neutral **backup capacities** (H₂ power plants) in 2045 (in periods with high residual load)

Policy implications for decarbonization strategies

Incentivize installation and integration of **rooftop PV** and **offshore wind**, and invest in **grid infrastructure** for vRES integration.

Introduction

2 Method

Support BEV adoption and **flexible utilization** through controlled bidirectional charging.

) Invest in sector-coupling technologies, such as PtH₂tP and PtH, to reduce CO₂ emissions and enable flexibility provision.

) Encourage innovation through research and development in clean energy technologies, including green hydrogen-fired power plants for backup capacity.

Be aware of negative interaction effects between different CO₂ abatement options and address these effects through effective policy formulations.

Overall, policymakers should use **step-wise model-derived MAC curves** to guide discussions on **climate change mitigation** and **achieve greater CO₂ emission reductions**.

Thank you for your attention!

Steffi Misconel

EURAC Research Institute for Renewable Energy Bolzano, Italy <u>steffi.misconel@eurac.edu</u>

PhD Candidate TU Dresden, Germany

www.eurac.edu

Credits: NOI Spa - NOI TechPark Bolzano

eurac research

Contact us

Eurac Research Drususallee/Viale Druso 1 39100 Bozen/Bolzano T +39 0471 055 055 info@eurac.edu www.eurac.edu

MACC algorithm integrated in the linear optimization model ELTRAMOD

Approach

 Analysis is based on the linear optimization model ELTRAMOD (dispatch version / MIN TC) with an integrated multi-iterative capacity expansion algorithm that determines the minimal CCA of an additional unit of a decarbonization measure (ELTRAMOD-MACC)

5-steps MACC algorithm

- 0) Input for the **reference system** is defined.
- 1) Reference system is **modified by adding an incremental value** (I_m) of a decarbonization measure.
- 2) Model determines the **cost-minimal dispatch** and the **CO₂ reduction**.
- 3) If CO₂ is reduced by adding a decarbonization, the **CCA is calculated**.
- 4) Algorithm checks whether CCA of the modified system is lower than the CCA of the previous 'best' energy. If true, the modified system with its results is saved as the new 'best' system.
- 5) In the outer loop, the model validates if the decarbonization measures' **expansion potential** (dv_{Max}) **will be exceeded** in the next step.

🕨 loop (it,	$it \in \{1,, 228\}; m \in$	{1,, 9}
	loop (m ,	
	if(limit(m) = false),	
0	$dv_{new} = dv + I_m$;	Eq. (1)
2	Solve ELTRAMOD using LP, minimizing TC;	
	Calculation of dispatch results, e.g.:	
	CO ₂ ; TC;	
	$CO_2 red = CO_2 - CO_2^{Ref};$	Eq. (2)
8	$if (CO_2 red < 0),$	
	$CCA = \frac{\Delta TC}{\Delta CO_2} = \frac{TC - TC^{Ref}}{CO_2^{Ref} - CO_2},$	Eq. (3)
	else CCA not defined;	
4	$if(CO_2red < 0 \ and \ CCA < \ CCA^{Best})$,	Eq. (4)
	$dv^{Best} = dv_{new};$	
	$CCA^{Best} = CCA;$	
	$CO_2^{Best} = CO_2;$	
	$TC^{Best} = TC;$	
); <	
6	$if((dv^{Best} + I_m \geq dv^{Max}),$	Eq. (5)
	limit(m) = true);	
	$dv = dv^{Best};$	
	$CO_2^{Ref} = CO_2^{Best};$	
	$TC^{Ref} = TC^{Best};$	uter loop
┗); ◀━━━		

Source: based on an approach of EPLANoptMAC from Prina et al. (2021)

Comparison of CO₂ reduction potential and total cost development

Comparison of electricity consumption, curtailments, and surplus generation

Comparison of technology-specific total cost development and short-term electricity generation costs

eurac research

Comparison of sector-specific CO₂ emission reduction

	203	0	2045		
	Remaining CO ₂	CO ₂ reduction	Remaining CO ₂	CO ₂ reduction	
Sector	[Mtco2]	[Mtco2]	[Mtco2]	[Mtco2]	
Power	34.6	51.6	0.1	5.6	
Heating	15.1	20.4	0.5	28.5	
Transport	86.3	47.0	45.3	16.7	
Total	135.9	119.1	45.8	50.9	