

How reduction of energy demand can help to reach or reinforce German mitigation targets

Patrick Jürgens, Julian Brandes, Markus Kaiser, Charlotte Senkpiel, Christoph Kost Enerday 2023 Dresden, May 5, 2023 www.ise.fraunhofer.de

The energy system model REMod

Modeling approach and scope

Geographical scope

Germany as one node

Conversion and consumption sectors

- Inclusion of all consumption sectors
- Multiple technologies are optimized separately
- Detailed integration of sector coupling effects

Optimization

- Minimization of transformation costs
- Non-linear "Black box" optimization of transformation path on yearly basis

Simulation

- Simulation of operation on hourly basis
- Including historic timeseries (demand, weather) of five years

The energy system model REMod

Simulation and Optimization

Transformation path given

Energy Model REMod

- Simulation of Operation
- Total system costs (CAPEX + OPEX + penalty terms) calculated

Evolutionary Optimizer (CMA-ES)

- Sampling of different transformation paths
- Algorithm leads to lowest system costs

System costs returned

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

3

Reduction of energy demand

Change of lifestyle based on GreenSupreme-Scenario (UBA)

Transport: modal shift and electrification of rail

 \rightarrow -47% private transportation, -40% road freight transport, -100% combustibles for rail, -60% aviation and navigation

Buildings: reduction of room temperature, sustainable forms of living \rightarrow -10% space heating

Industry: circular economy, sustainable consumption \rightarrow -33% industrial process heat

Classical power applications: efficiency, sustainable use of devices (e.g. air-conditioning, tumble dryer) \rightarrow -45% demand of classical electricity

Methodology

Development of scenarios

Reference

Projected energy demand German climate targets (net-zero 2045) Optimized pathway

Sufficiency Reduction of energy demand German climate targets (net-zero 2045) Optimized pathway

Sufficiency – CO₂-reduction Reduction of energy demand Transformation pathway of reference scena

Parameters of the different scenarios

Energy demand

- Projected
- Reduction by sufficiency measures

Climate targets

- German climate targets (net-zero 2045, given CO2-budget)
- Reinforced mitigation

Optimization

- Transformation path optimized with given parameters
- Simulated with given transformation path

Fluctuating Renewable Energies

Reference

- PV: 210 GW (2030), 520 GW (2045)
- Wind: 160 GW (2030), 310
 GW (2045)

Sufficiency

- PV: 130 GW (2030), 260 GW (2045)
- Wind: 120 GW (2030), 190
 GW (2045)
- → Mitigation targets can be reached with less capacity additions

Buildings: Space and Water heating

Share in %

- → Mitigation targets can be reached with lower share of heat pumps
- → Delayed transformation in demand sectors can be compensated

Primary Energy Demand

Primary energy demand

→ highest in reference, lowest in sufficiency scenario

Sufficiency – CO2-reduction

- → earlier phase out of fossil energy
- → Higher primary energy compared to sufficiency, lower efficiency of the system

Final Energy Demand

By energy carrier

- → Demand highest in reference, lowest in CO2-reduction scenario
- → Electricity demand highest in reference scenario

CO2-Emissions

 \rightarrow Mitigation reinforced in CO2reduction-scenario

Fraunhofer

ISE

Cumulated fossil primary energy demand and CO2 emissions

Variable	Unit	Scenario Reference	Scenario CO2- reduction	Savings
CO2-emissions	Mt	7 790	6 390	1 400
Natural Gas	TWh	15 540	12 250	3 290
Hard Coal	TWh	1 850	1 740	110
Lignite	TWh	1 570	1 530	35
Oil	TWh	13 570	10 840	2 730

11 © Fraunhofer ISE FHK-SK: ISE-INTERNAL

Conclusion

Advantages of reduction of energy demand

Transformation of energy sector Mitigation targets can be reached with less capacity additions

Transformation of demand sectors Delayed transformation in demand sectors can be compensated

CO₂-emissions 1.4 Gt CO2 can be saved, mainly by savings of Natural Gas (3 290 TWh) and Oil (2 730 TWh)

12 © Fraunhofer ISE FHK-SK: ISE-INTERNAL

Thank You for Your Attention!

Patrick Jürgens, Julian Brandes, Markus Kaiser, Charlotte Senkpiel, Christoph Kost Energy Systems and Energy Economics patrick.juergens@ise.fraunhofer.de

Fraunhofer ISE Heidenhofstraße 2 79110 Freiburg Germany www.ise.fraunhofer.de

Conventional Powerplants

Fraunhofer

PtX-technologies

District heating

Storage Reservoir

Installed capacity of storage facilities in GWh

Buildings: renovation rate

Share in %

→ Mitigation targets can be reached with slower transformations

Fraunhofer

Solar thermal

→ Mitigation targets can be reached with slower transformations

Industry: industrial process heat

→ Mitigation targets can be reached with slower transformations

Fraunhofer

ISE

Share in %

Transport: LDVs

→ Mitigation targets can be reached with slower transformations

Fraunhofer

Transport: Trucks

Share in %

 \rightarrow Mitigation targets can be reached with slower transformations

Fraunhofer

ISE

Primary Energy Demand

Fossil energy sources

Fossil energy sources in TWh

Final Energy Demand

Final Energy Demand Industry

2 © Fhirsir isetintennae

Final Energy Demand Residential and Commercial

Final Energy Demand

Transportation

