Coherent Transformation Pathways in Energy System Modeling – A Case Study for Germany

Toni Busch*, Florian Pontzen, Theresa Groß, Jochen Linßen, Detlef Stolten *t.busch@fz-juelich.de

> ENERDAY 2023 - 17th International Conference on Energy Economics and Technology Dresden 05.05.2023

IEK-3: Institute of Techno-economic Systems Analysis

Member of the Helmholtz Association

Motivation

- Spatially resolved analysis of infrastructures (generation + transmission) often neglected in energy system studies
- Research question:
 - How would the spatial distribution of generation and transmission infrastructures develop in an energy system taking hydrogen into account?

Features of this work:

- Integrated energy system model: Greenhouse gas neutral Germany 2045
- Transmission infrastructures with the focus on hydrogen
- Transformation pathways (2020-2045) with and without inheritance of infrastructure components

[1] Agora Energiewende. Klimaneutrales Deutschland 2045: Wie Deutschland seine Klimaziele schon vor 2050 erreichen kann; 2021.

[5] Luderer G, Kost C, Dominika. Deutschland auf dem Weg zur Klimaneutralität 2045: Szenarien und Pfade im Modellvergleich: Potsdam Institute for Climate Impact Research; 2021.

JÜLICH Forschungszentrum

Member of the Helmholtz Association

IEK-3: Techno-economic Systems Analysis

^[2] BGC, BDI. Klimapfade 2.0: Ein Wirtschaftsprogramm für Klima und Zukunft; 2021.

^[3] Jugel C, Albicker M. dena-Leitstudie Aufbruch Klimaneutralität: Eine gesamtgesellschaftliche Aufgabe; 2021.

^[4] Sensfuss F, Sensfuß F, Lux B, Bernath C, Kiefer C, Pfluger B, et al. Langfristszenarien für die Transformation des Energiesystems in Deutschland 3: Kurzbericht: 3 Hauptszenarien; 2021.

Methodology: Model Coupling

Specs of the optimization

- Integrated energy system model
- Minimizing total annual costs (TAC)
- Hourly resolution (8760 time steps)
- Myopic transformation
- Scenario: Greenhouse gas neutral transformation for Germany 2020-2045
- **Commodities**: electricity, methane, hydrogen, heat
- **Sectors**: industry, transport, energy, households, CTS
- Single-region model: High sectoral coverage
- **Multi-region model**: High spatial resolution (80 regions)

[1] Kullmann F, Markewitz P, Kotzur L, Stolten D. The value of recycling for low-carbon energy systems - A case study of Germany's energy transition. Energy. 2022;256:124660. doi:10.1016/j.energy.2022.124660.
 [2] Groß T. Multiregionales Energiesystemmodell mit Fokus auf Infrastrukturen: RWTH Aachen University; 2023.
 Member of the Helmholtz Association IEK-3: Techno-economic Systems Analysis 3

Methodology: Model Coupling

Specs of the optimization

- Integrated energy system model
- Minimizing total annual costs (TAC)
- Hourly resolved
- Scenario: Greenhouse gas neutral transformation for Germany 2020-2045
- **Commodities**: electricity, methane, hydrogen, heat
- Sectors: industry, transport, energy, households, CTS
- Single-region model: High sectoral coverage
- **Multi-region model**: High spatial resolution (80 regions)

[1] Kullmann F, Markewitz P, Kotzur L, Stolten D. The value of recycling for low-carbon energy systems - A case study of Germany's energy transition. Energy. 2022;256:124660. doi:10.1016/j.energy.2022.124660.
 [2] Groß T. Multiregionales Energiesystemmodell mit Fokus auf Infrastrukturen: RWTH Aachen University; 2023.
 Member of the Helmholtz Association IEK-3: Techno-economic Systems Analysis 4

Scheme of the Model Coupling Between the Singe- and Multi-Region Model

Member of the Helmholtz Association

IEK-3: Techno-economic Systems Analysis

5

[1] Stolten D, Markewitz P, Schöb T, Kullmann F, Kotzur, L. et al. New targets using old pathways?: Strategies for a greenhouse gas neutral energy supply by 2045.

[1] Risch S, Maier R, Du J, Pflugradt N, Stenzel P, Kotzur L, Stolten D. Potentials of Renewable Energy Sources in Germany and the Influence of Land Use Datasets. Energies. 2022;15:5536. doi:10.3390/en15155536.

Member of the Helmholtz Association

IEK-3: Techno-economic Systems Analysis

7

JÜLICH

Placement of Electrolyzers Close to Favourable Renewable Energy Production Sites (Mainly Wind Energy) in the North

Placement of Electrolyzers Close to Favourable Renewable Energy Production Sites (Mainly Wind Energy) in the North

Electricity Demand

GH₂ Supply

10

Member of the Helmholtz Association

Supply and Demand of Hydrogen do not Fall Together Highlighting the Importance of Transmission Infrastructures

Endogenous Optimization of a Hydrogen Transportation Network based on Supply and Demand

Endogenous Optimization of a Hydrogen Transportation Network based on Supply and Demand

Hydrogen Pipeline Grid 2045

Development of the GH₂ Pipeline Grid Network in an Energy System Model *with* inheritance

Development of the GH₂ Pipeline Grid Network in an Energy System Model *with* Inheritance

Development of the GH₂ Pipeline Grid Network in an Energy System Model *without* Inheritance

Import Limits in One Region Evoke the Construction of New Import Routes – Old Connection Becomes Obsolete

2040 operation total hydrogen flow

Member of the Helmholtz Association

18

Key Takeaways

- The spatial distribution of renewable energy sources is predominantly determined by favourable production sites (high full load hours) if there are suitable transport networks
- Hydrogen is provided by imports from southern Germany and domestic production mainly by wind-powered electrolyzes in northern Germany
- This shows the importance of considering transmission infrastructures and integrated energy system planning
- The inheritance of infrastructures in myopic energy system models is a prerequisite for coherent transformation pathways and a more realistic expansion of infrastructures
- However, single year optimizations without inheritance can show alternative solutions with cost optimal results in intermediate years

Thank you for your attention!

For further questions, please contact:

Toni Busch +49 1515 8032 947 t.busch@fz-juelich.de Prof. Dr. Detlef Stolten +49(0)2461 61 5147 d.stolten@fz-juelich.de IEK-3 profile go.fzj.de/iek3

IEK-3 publications go.fzj.de/iek3-publications

GHG net zero scenario go.fzj.de/ksg45

Project DacStorE go.fzj.de/dacstore

H2 Atlas Africa go.fzj.de/h2africa

Project Resur go.fzj.de/resur

