

Reviewing energy transition studies in the light of the recent European gas market developments

by **Daniel Brunsch**, Julian Radek, Lars Ostmeier, Christoph Weber

Enerday 5th May 2023, Dresden

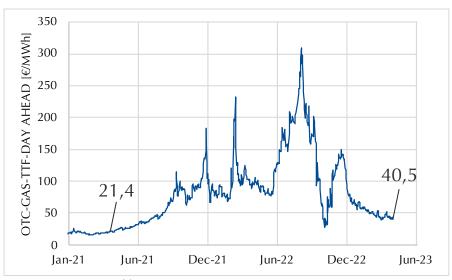
Offen im Denken

Content

Offen im Denken

Introduction	1
Study selection	2
Gas supply gap	3
Analysis of possible solutions	4
Main conclusions	5

Introduction



Offen im Denken

Introduction - Study selection - Gas supply gap - Analysis of possible solutions - Main conclusions

- Since Mid-2021, especially after the Russian invasion of Ukraine, natural gas prices on European markets significantly increased
 - Europe turned to other natural gas suppliers (mainly LNG)
 - Prices have declined but still around two times higher than precrisis
 - Increased use of coal and oil
- At the same time: Political goal in Germany full decarbonization until 2045
- Several studies with transformation pathways for achieving this goal
- Are the projected transition paths still valid given the recent developments?

Source: energate gmbh

Study selection - Criteria

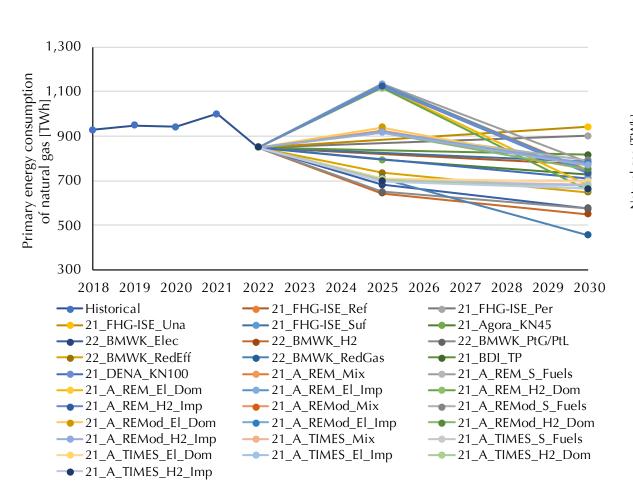
Offen im Denken

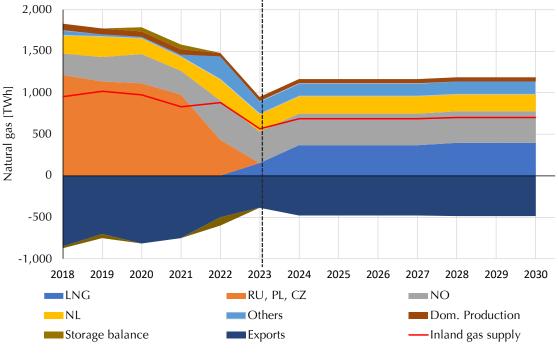
- Selection criteria
 - System studies analyzing Germany
 - Climate neutrality goal in 2045
- Selected studies
 - 2021 Fraunhofer 4 scenarios
 - 2021 Agora 1 scenario
 - 2022 BMWK 5 scenarios
 - 2021 BDI 1 scenrio
 - 2021 Dena 1 scenario
 - 2021 Ariadne 6 scenarios (calculated with 3 different models)

Study selection - Overview

Offen im Denken

Initiator/ project	Authors and publication year	Study	Selected scenarios	Abbreviation	Initiator/ project	Authors and publication year	Study	Selected scenarios	Abbreviation
	Fraunhofer ISE (2021)	Wege zu einem klimaneutralen	Reference	21_FHG-ISE_Ref				Mix	21_A_REM_Mix
-			Persistence	21_FHG-ISE_Per				Syn_Fuels	21_A_REM_S_Fuels
			Unacceptance	21_FHG-ISE_Una				Elec_Dom	21_A_REM_EI_Dom
		Energiesystem	Sufficiency	21_FHG-ISE_Suf				Elec_Imp	21_A_REM_El_Imp
Agora,	Prognos, Öko- Institut and Wuppertal-Institut		KN2045	21_Agora_KN45				H2_Dom	21_A_REM_H2_Dom
Stiftung		Klimaneutrales						H2_Imp	21_A_REM_H2_Imp
Klima-		Deutschland 2045						Mix	21_A_REMod_Mix
neutralität	(2021)				Ludanan Vast	Deutschland auf	Syn_Fuels	21_A_REMod_S_Fuels	
BMWK	Fraunhofer ISI et al. (2022)	Langfristszenarien	T45-Elec	22_BMWK_Elec	Kopernikus- Projekt	Luderer, Kost and Sörgel	dem Weg zur	Elec_Dom	21_A_REMod_El_Dom
		Transformation des T45-PtG/PtL	22_BMWK_H2	Ariadne	(2021)	Klimaneutralität	Elec_Imp	21_A_REMod_El_Imp	
			T45-PtG/PtL	22_BMWK_PtG/PtL			2045	H2_Dom	21_A_REMod_H2_Dom
			T45-RedEff	22_BMWK_RedEff				H2_Imp	21_A_REMod_H2_Imp
		Deutschland	T45-RedGas	22_BMWK_RedGas				Mix	21_A_TIMES_Mix
BDI	Boston Consulting		Target Path	21_BDI_TP				Syn_Fuels	21_A_TIMES_S_Fuels
	Group (2021)	Klimapfade 2.0						Elec_Dom	21_A_TIMES_EI_Dom
dena	EWI (2021)	dena-Leitstudie Aufbruch KN100		21_DENA_KN100				Elec_Imp	21_A_TIMES_EI_Imp
			KN100					H2_Dom	21_A_TIMES_H2_Dom
		Klimaneutralität						H2_Imp	21_A_TIMES_H2_Imp




Primary energy consumption of natural gas and overview of historical and projected natural gas supply in TWh

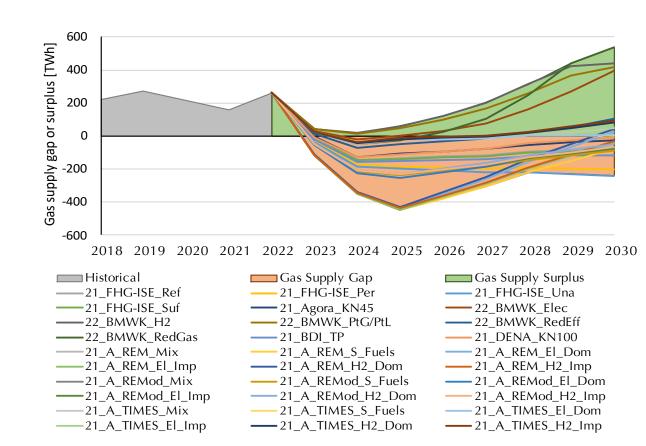
UNIVERSITÄT
DUISBURG
ESSEN

Offen im Denken

Introduction - Study selection - **Gas supply gap** - Analysis of possible solutions - Main conclusions

Sources: Bundesnetzagentur (historical data), EWI (LNG capacities)

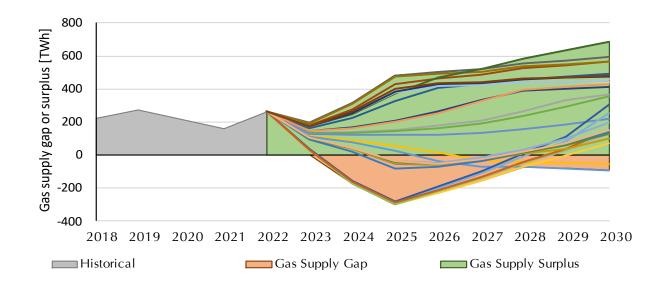
Source: Bundesnetzagentur (historical data)



Gas supply gap

Offen im Denken

- Gas supply situation
 - + Storage filling level ($0 \le \text{level} < \text{max. Volume}$)
 - + Calculated inland gas supply
 - Primary energy consumption of natural gas from the scenarios
 - = Gas supply surplus (+) / gap (-)
 - Gas supply gap is not carried over into the following year
- ➤ In 28 out of 30 scenarios, a gas supply gap occurs at least once
- Options to avoid a supply gap
 - 1. Increase imports
 - 2. Reduction of gas demand
 - 3. Substitution with hydrogen

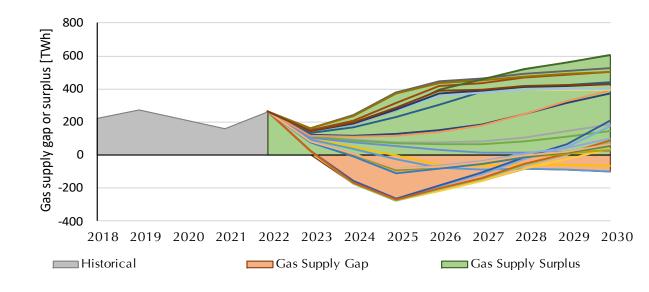


Increase of natural gas imports from other sources

Offen im Denken

- In 2022, pipeline deliveries from Norway, the Netherlands and other sources (especially Belgium) were significantly increased
- Assumption
 - pipeline-bound deliveries continue like in 2022
- ➤ Gas supply gaps occur in 14 out of 30 scenarios at least once

Further reduction of natural gas demand

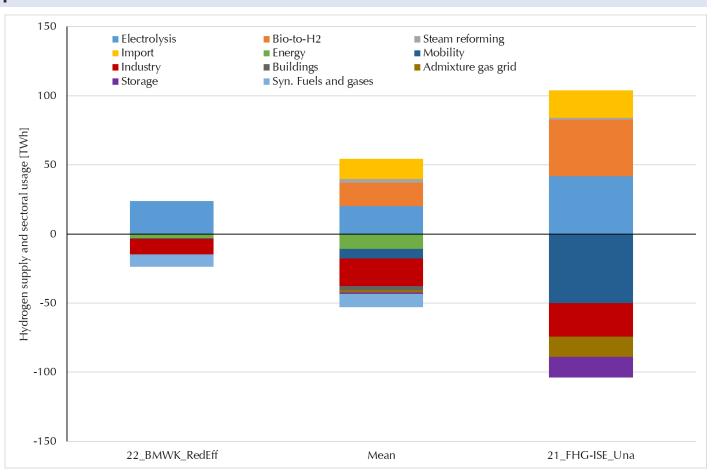


Offen im Denken

Introduction - Study selection - Gas supply gap - Analysis of possible solutions - Main conclusions

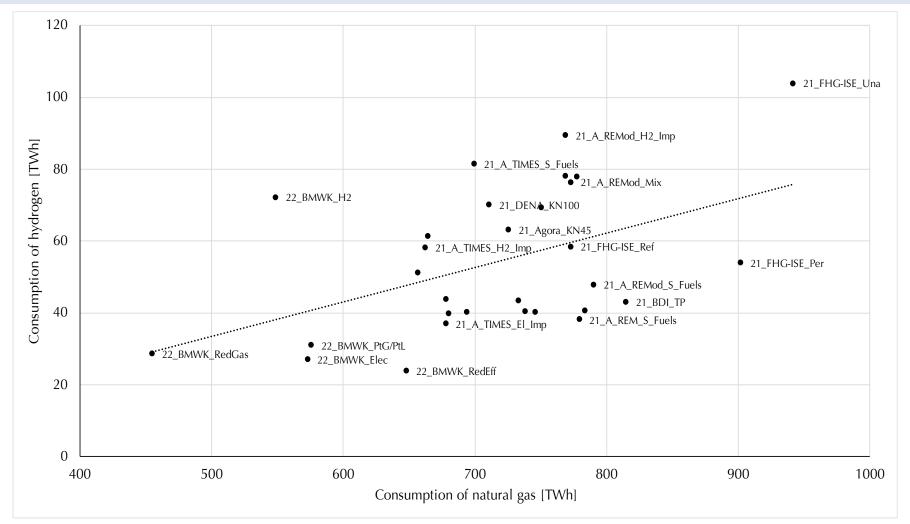
- Gas savings were around 15 % in 2022
- Assumption
 - ➤ In every year gas saving reach also 15 % like in 2022

➤ Only in 16 of 30 scenarios, a gas supply gap occurs at least once



Substitution with hydrogen – Supply and usage in 2030

Offen im Denken


- Hydrogen supply and usage varies strongly between scenarios
 - Ca. 100 TWh
 - Mean around 54 TWh
- On average, heterogenous supply sources and sectoral usage
- Rather low compared to natural gas supply

Correlation of natural gas and hydrogen consumption

Offen im Denken

Main conclusions (I)

Offen im Denken

- Bottlenecks possible until 2030 without reduction of gas demand or continued savings
 - Smaller supply gaps in scenarios that focus rather on electrification than on use of gases (e. g. BMWK scenarios)
 - Substitutes necessary if gas demand is to be reduced (electricity or hydrogen)
- Substitution by electrification requires substantial investments in renewable energies
 - Electrification of the building and industry sectors should be accelerated
 - Climate goals impede increased usage of coal and oil for power production
 - Achievement of ambitious renewable goals should be the main target
- Conclude long-term contracts with supply countries
 - Goal is to achieve high import levels similar as in 2022 (e. g. from NO and NL)

Main conclusions (II)

Offen im Denken

- High usage of hydrogen is hardly related to a substitution of natural gas consumption
 - Natural gas consumption mainly substituted by electricity
 - In fact, rather positive correlation between consumption of natural gas and hydrogen
- Contribution of hydrogen to reduction of supply gap is only possible if...
 - It does not use the import capacities reserved for LNG
 - It does not rely on renewable power production that would be used for electrification of other sectors
 (e. g. industry or buildings)
- ➤ Comprehensive substitution of natural gas with hydrogen requires increased import capacities and/or additional renewable generation capacities.

Thank you for your attention!

Offen im Denken