ENERDAY, TU Dresden, 5. May 2023

Defining green hydrogen: Does simultaneity benefit big players?

Nieves Casas Ferrús, Oliver Ruhnau, Reinhard Madlener

1. Introduction and literature review

2. Method

- 3. Results and sensitivity analyses
- 4. Conclusion

Introduction

Hydrogen

- At the center of **indirect electrification**
 - \rightarrow Support of the integration of variable renewables in the power sector
 - ightarrow Decarbonization of hard-to-abate sectors

Literature review

Arguments when discussing simultaneity

- Levelized **cost** of hydrogen (LCOH)
- **CO2-intensity** of the produced hydrogen

Work	Investigation of a unit or portfolio	
	Unit	Portfolio
Schlund and Theile 2021. Simultaneity of green energy and hydrogen production	X	
Ruhnau and Schiele 2022. Flexible green hydrogen	X	
Zeyen, et al. 2022. Hourly versus annually matched renewable supply for electrolytic hydrogen		X
Brauer, et al. 2022. Green hydrogen – How grey can it be?		X

Wind profiles

Portfolio effects: Lower variance in energy production (not a higher average)

Research question

Assumptions

- Volatility reduction of variable renewables through geographic and technological smoothing
- Relevant only when hourly simultaneity is enforced

- Research question

• Can owners of a geographically diverse portfolio of variable renewable energy achieve a **lower LCOH** than smaller players?

Implications if true

- Compromise of the non-discriminatory principle of the European energy market
- High market entry barriers

1. Introduction and literature review

2. Method

- 3. Results and sensitivity analyses
- 4. Conclusion

Method: Units and portfolio

Method: Optimization Model

Objective function

- Minimization of the LCOH, composed of
 - Investment costs
 - Variable costs (electricity and H2 production)
 - Difference of selling and buying electricity from the grid

Contraints

- o Constant hydrogen supply for each hour of the year
- \circ Additionality
- Simultaneity: electricity exchange between units for portfolio owners

Optimized sizes

- Size of all unit **components**
- Electricity produced and traded at each hour

- 1. Introduction and literature review
- 2. Method
- 3. Results and sensitivity analyses
- 4. Conclusion

Results: Benchmark

- Two runs with single time series

- Germany portfolio, 3069 full load hours (FLH)
 - Source: ENTSO-E's ERAA-5
- o Single location, 3100 FLH
 - Source: atlite

→ Similar FLH: guarantee **comparability** in terms of LCOE

Results: Main case

- Two time series (same turbine type, different heights)
 - East: 2543 FLH
 - West: 2547 FLH

• Hourly simultaneity:

- Not enforced: same LCOH for all three scenarios
- Enforced: Portfolio effects

Results: Sensitivity analyses

Grid fees

Main case: 27.5 €/kWh

 \rightarrow +/- 50% change

- 1. Introduction and literature review
- 2. Method
- 3. Results and sensitivity analyses
- 4. Conclusion

Conclusion

Preliminary results: indicative evidence of the existence of portfolio effects

Next steps

- Further sensitivity analysis
- Effects of increasing the number of locations in a portfolio
- Including PV as a generation technology

Relevance for policy

- Argument against hourly simultaneity
- Disadvantage for smaller players, the scale of which depends on the discussed parameters

