

## On assessing the value of decentral flexibility given different flexibility deployment and TSO-DSO coordination

Hendrik Kramer, Aiko Schinke-Nendza, Abuzar Khalid, Christoph Weber Universität Duisburg-Essen

Dresden, May 5th, 2023



Bundesministerium für Wirtschaft und Klimaschutz

#### UNIVERSITÄT DUISBURG ESSEN

**Offen** im Denken

# What can we expect concerning Redispatch in a fully renewable based system?

UNIVERSITÄT D.U.I.S.B.U.R.G E.S.S.E.N *Offen im Denken* 

The Future of Redispatch – Study Case: Germany 2050 – Preliminary Results – Outlook

- A net-zero emission system requires different system management
  - Infrastructure: e.g. capacity
  - Organization: e.g. processes and communication with more "smart" units, ...
- Decentral flexibility is seen as a key component in future congestion management (Redispatch 3.0)
- Yet, implications from a global system perspective and across voltage levels are unknown.

→Which small-scale flexible technologies are beneficial from a system-perspective?
→ To what extent is decentral flexibility deployed for congestion management?
→ How does the varying deployment affect system operation?



## Factors affecting future flexibility depolyment for redispatch

Offen im Denken

DUISBURG ESSEN

UNIVERSITÄT

**The Future of Redispatch** – Study Case: Germany 2050 – Preliminary Results – Outlook

#### Possible sources of decentral flexibility in energy systems

- Novel flexibility options
  - Electrification of heating and mobility sector
- Currently in use
  - Dispatchable generation
  - Renewable curtailment
- Existing, but not in use so far
  - Small units (Redispatch 3.0)

#### Market context

- Incentives/Rewards for flexibility
  - Zonal vs. nodal markt design
- Substitutes to decentral flexibility
  - Central flexibility through power plants

#### Influence of system operation (TSO, DSO)

- Operational system management
  - Dispatch, system responsibility, billing
- Grid planning principles
  - *Consideration of flexibility use as substitute to grid extension*



### Methodology

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

- Underlying Model: Energy system model in Julia Language
  - Daily rolling planning of market clearing, then system operation run with "redispatch"
  - Decentral storage filling level from system model run is passed forward to next iteration



- Decentral units that participate in redispatch:
  - Heat pumps, battery storage, power-to-gas, dispatchable power plants



### Net-zero emission study case for Germany in 2050

The Future of Redispatch – Study Case: Germany 2050 – Preliminary Results – Outlook

- Distribution network region Schleswig-Holstein (110 kV, 20 kV, 0.4 kV)
- Model run for calendar week 9 (first week in March)
  - Winter season: October and March
  - Low residual load (high wind infeed, low local demand)
- Here: Focus on battery storage deployment as sensitivity
  - 1. Amount of battery units is altered while heat pumps are "dumb"
  - 2. Amount of battery units is altered while heat pumps are "smart"

No market-oriented heat pump flexibility

- No deployment of decentral storage units in medium and low voltage grid
- deployment "market-oriented" decentral storage units in medium and low voltage grid

Heat pump units are integrated market-oriented

UNIVERSITÄT

D U I S B U R G E S S E N

Offen im Denken

- No deployment of decentral storage units in medium and voltage grid
- deployment "market-oriented" decentral storage units in medium and low voltage grid

#### Net-zero emission study case for Germany in 2050

D U I S B U R G E S S E N

UNIVERSITÄT

Offen im Denken

|                                       | Germany                 | Schleswig-Holstein |
|---------------------------------------|-------------------------|--------------------|
| Conventional Load                     | 648 TWh<br>115 GWp      | 6.6 TWh<br>1.4 GWp |
| Photovoltaik (after self-consumption) | 60 TWh<br>62 GWp        | 6 TWh<br>4.7 GWp   |
| Wind (onshore and offshore)           | 585 TWh<br>154 GWp      | 77 TWh<br>19 GWp   |
| E-Mobility<br>(residential)           | 50 TWh<br>20 GWp        | 1.6 TWh<br>0.6 GWp |
| Heat pumps                            | 45 GW                   | 2 GW               |
| Battery units                         | 20 GW<br>22 GWh         | 1 GW<br>1 GWh      |
| Power-to-Gas                          | 53 GW                   | 1,9 GW             |
| Network nodes                         | 543 (TSO)<br>4775 (DSO) | 897 (DSO)          |



## Preliminary results for Schleswig-Holstein

D\_UISBURG ESSEN Offen im Denken

UNIVERSITÄT



## **Preliminary results for Schleswig-Holstein**

D\_UISBURG ESSEN Offen im Denken

UNIVERSITÄT



- Battery storage units in lower voltage level support the grid
  - Line loading is decreased on average (compared to line loading after redispatch)
  - Decentral storage units reduce the amount of power required for redispatch
- Curtailment of renewable energy sources remains similar even though different flexibility technologies are used in the distribution system
  - Congestions in this study case cannot be solved by temporal or geographical flexiblity
  - Further assessment of implausible grid representation is necessary
- Power exchange of transformers is affected if decentral flexibility is applied.
  - Redispatch in the downward direction is required
  - Decentral storage units reduce the deviation between market run and system operation schedules



## Thank you for your attention.

#### M. Sc. Hendrik Kramer

House of Energy Markets and Finance Universität Duisburg-Essen R11 T09 C20 | Universitätsstr. 12 | 45141 Essen Tel. +49 201/18-33994 Email: Hendrik.Kramer@uni-due.de







- Eid, C; Codani, P.; Perez, Y.; Reneses, J.; Hakvoort, R. (2016) Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design.
- Maldet, M.; Revheim, F.; Schwabenender, D; Lettner, G.; Granado, P.; Saif, A.; Löschenbrand, M.; Khadem, S. (2022) Trends in local electricity market design: Regulatory barriers and the role of grid tariffs.
- Lindberg, M. (2022) The power of power markets: Zonal market designs in advancing energy transitions.
- Fraunhofer IWES (2015) The European Power System in 2030: Flexibility Challenges and Integration Benefits

