Hydrogen and Heat Storages as Flexibility Options for a Greenhouse Gas-Neutral German Energy System

Thomas Schöb*, Maximilian Hoffmann, Felix Kullmann, Jochen Linßen, Detlef Stolten

*t.schoeb@fz-juelich.de

ENERDAY 2023 – TU Dresden 05.05.2023

IEK-3: Institute of Techno-economic Systems Analysis

Motivation: Uptake of Battery Storage Installations in Germany

- Does a greenhouse gas-neutral German energy system need other storages besides electricity storages?
- What role can hydrogen and heat storages play in the year 2045?

[1] Figgener et al., The development of battery storage systems in Germany: A market review (status 2023), 2023

[2] Netzentwicklungsplan Strom 2037 / 2045, Erster Entwurf der Übertragungsnetzbetreiber, 2023 Member of the Helmholtz Association

Agenda

- 1 Motivation
- 2 Methods: Energy system model ETHOS.NESTOR
- 3 Results
- 4 Conclusion

Methods: ETHOS.NESTOR Energy System Model [1], [2]

Characteristics

- German energy system
- Sectors: Energy supply, industry, buildings and transport
- PtX technologies for sector coupling
- Energy storages
- Hourly resolution

Methods

- Cost optimization
- Myopic transformation pathway
- [1] Kullmann et al., The value of recycling for low-carbon energy systems A case study of Germany's energy transition, 2022
- [2] https://github.com/FZJ-IEK3-VSA/FINE

NESTOR: National Energy System with SecTOR Coupling

- 1 Motivation
- 2 Methods: Energy system model ETHOS.NESTOR
- 3 Results: Electricity Sector 2045
- 4 Conclusion

Results: Electricity Sector 2045

[1] Federal Climate Change Act of 12 December 2019 (Federal Law Gazette I, p. 2513), as last amended by Article 1 of the Act of 18 August 2021 (Federal Law Gazette I, p. 3905)

3

Results: Storage capacities 2045

Heat and Hydrogen Storage Expansion Necessary until 2045

Decentral heat storages with 281 GWh capacity (10% of storage capacity), supply 68 TWh (55%) of heat

3

Results: Role of hydrogen storages

Hydrogen Storage for Security of Supply in the Year 2045

> Around 35 TWh H₂ storage needed to bridge dark, cold lulls in 2045

Robust Design of Hydrogen Storage Capacity for 38 Scenario Years

- Robust design of H₂ storage for 38 scenario years: Around
 73 TWh storage capacity needed
- Sufficiently large storage potential in salt caverns exists, but construction of new caverns required

Flexibility Provided by Hydrogen Storages in October 2045

> Hydrogen storages enable flexible operation of electrolyzers

12

3

Results: Role of heat storages

Heat Storage Level in the Year 2045

- > Earth basins in district heating networks for mid- and long-term storage
- Decentral buffer storages in buildings only for short-term storage

Flexibility Provided by Heat Storages in October 2045

Heat storages enable flexible operation of heatpumps and PtH-applications

3

Results: Impact on electricity supply and demand

Impact on Electricity Supply and Demand in October 2045

Hydrogen and heat storages are crucial flexibility sources. in a greenhouse gas-neutral German energy system

17

Conclusion

- About 2.8 TWh of heat and about 35 TWh of hydrogen storage capacity required for security of supply in the year 2045
- Robust system design doubles the required H₂ storage capacity
- Hydrogen storages needed for flexible operation of electrolyzers
- Heat storages used as seasonal and short-term storages
- Hydrogen and heat storages crucial for an energy system based on renewable energies

Thank you!

Thomas Schöb +49 171 4979702 t.schoeb@fz-juelich.de Prof. Dr. Detlef Stolten +49(0)2461 61 5147 d.stolten@fz-juelich.de

Institute of Energy and Climate Research

Techno-economic Systems Analysis (IEK-3)

Forschungszentrum Jülich www.fz-juelich.de

Backup

ETHOS: Energy Transformation PatHway Optimization Suite

*with IEK-STE