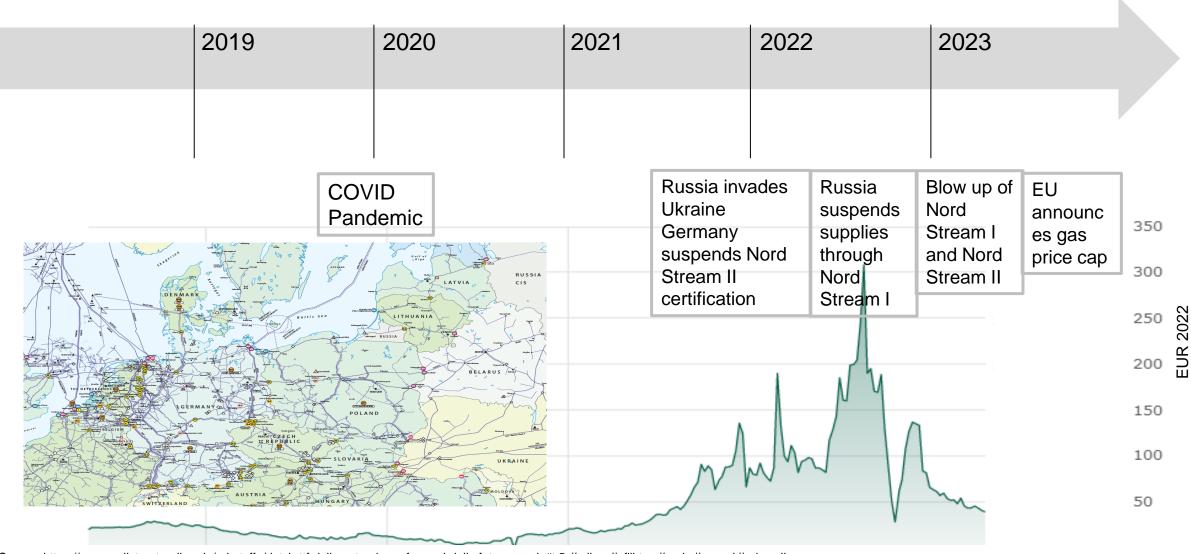
Enerday, TU Dresden May 05, 2023

EXPANDING NATURAL GAS CROSS-BORDER FLOWS IN EUROPE THROUGH THE OPTIMAL USE OF THE PIPELINE GRID: A STYLIZED MODEL COMPARISON

Nikita Moskalenko^{1,3}, Lukas Barner^{1,2}, Franziska Holz^{2,4}, Konstantin Löffler^{1,4,3}, Björn Steigerwald^{1,2}, <u>Christian von Hirschhausen^{1,2}</u>

¹Technische Universität Berlin ²German Institute for Economic Research (DIW Berlin) ³Europe University Flensburg (EUF) ⁴NTNU Trondheim

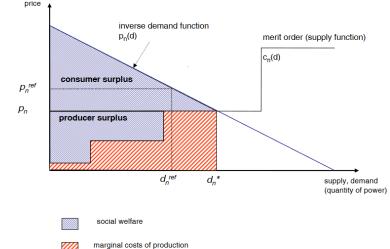

NTNU

Norwegian University of Science and Technology

1) Introduction

- 2) Theory and state of Literature
- 3) Scenarios with the Global Gas Model (GGM)
- 4) Scenarios with GENeSYS-MOD
- 5) Discussion and Conclusion

Introduction: Russian gas dependency, Ukrainian War and acceleration in the diversification of the European Gas supply

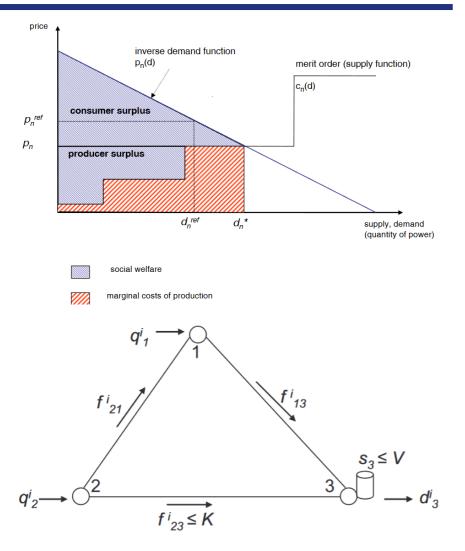

Source: https://www.wallstreet-online.de/rohstoffe/dutch-ttf-daily-natural-gas-forward-daily-futures-preis#t:5y||s:lines||sfill:true||a:abs||v:week||ads:null

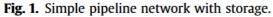
Moskalenko, Barner, Holz, Löffler, Steigerwald, von Hirschhausen Technische Universität Berlin,German Institute for Economic Research (DIW Berlin), Europe University Flensburg (EUF),NTNU Trondheim

Introduction: A long-term consideration

- ~ Importance of trans-boundary grid infrastructure for flexibility and supply security
- ~ Long-term issue, with regular peak of attention:
 - FERC Order 636 (1992), the "final restructuring rule", was a milestone in moving from "simple" nondiscriminatory third-party access (TPA) towards a fundamental vertical unbundling of transportation and sales activities
 - EU Directive 98/92: unbundling and efficient use of capacities
 - First Russian-Ukrainian gas crisis 2006 ...
 - ... natural gas / energy crisis of 2022
- ~ Theoretically: "nodal pricing" yields short-term welfare optimization / cost minimization
- ~ Application gap:
 - US applies nodal pricing since the 1990s
 - Europe started reforms in the 2000s, but is still stuck with entry-exit
- ~ Topic gained importance through the energy and natural gas crisis
- ~ Particular issue with "reverse flows", i.e. differentiated capacity caps on flows from A \rightarrow B \neq B \rightarrow A

→ In this paper, we compare existing network regulation in Europe with entry-exit and uni-directional caps with a (hypothetical) situation of bidirectional nodal prices


1) Introduction


2) Theory and state of Literature

- 3) Scenarios with the Global Gas Model (GGM)
- 4) Scenarios with GENeSYS-MOD
- 5) Discussion and Conclusion

Theory and state of literature

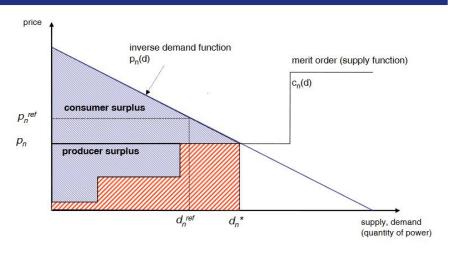
- Nodal pricing has its origins in the electricity sector (Schweppe et al. 1988; Hogan 1992), recent update by Hogan and Harvey (2022)
- ~ Based on simple welfare maximization
- ~ First applications in the US:
 - Electricity after US FERC order 888 ("provide open access transmission service on a comparable basis to the transmission service they provide themselves")
 - ~ Natural gas (Lochner, et al., :
 - Technically less complex than electricity (no loop flows)
 - But complexity through non-linear flows ("Weymouth equation", etc.)

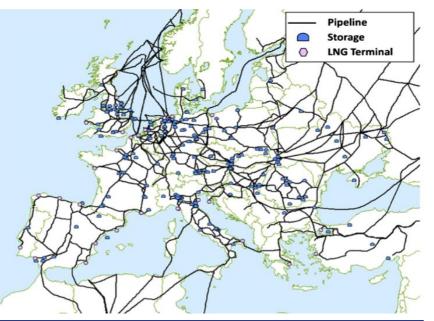
- 5 -

The principle of "nodal pricing"

Problem: uniform pricing \rightarrow congestion not properly determined?

Nodal Pricing


= location value of energy:


Node specific costs from energy generation and transmission (e.g. losses and congestion)

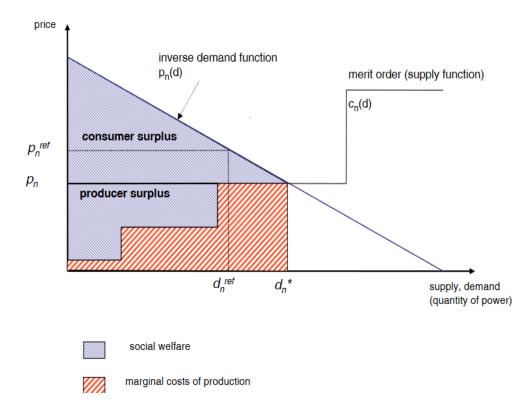
Node: physical location on the transmission grid (incl. generators and loads)

Calculation: market clearing prices for all nodes subjects to physical and security constraintss

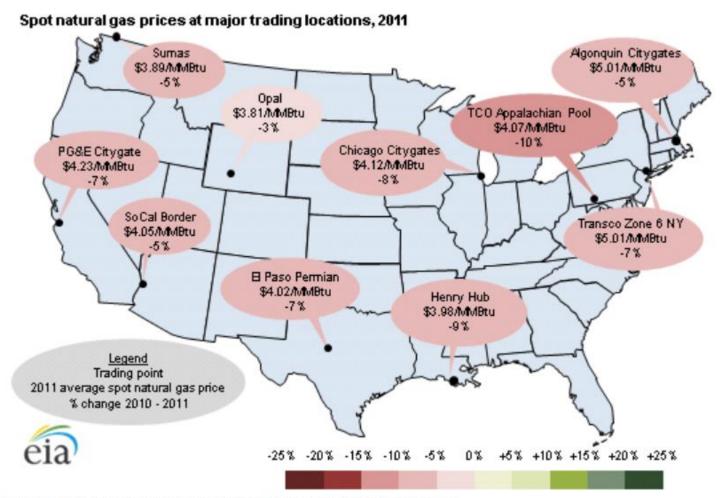
-> reflects real conditions and costs in the grid for every node-> Indicate and price congestions when overstepping transmission limits

Optimization Problem

Objective function: Social welfare


$$\max W(d_n^*) = \left(\int_0^{d_n^*} p^*(d_n^*) d * d_n^* - \int_0^{d_n^*} c(d_n^*) d * d_n^* \right)$$

s.t. $|P_i| \le P_i^{max}$ line flow constraint $\sum_n g_n = \sum_n d_n + L$ energy balance constraint $\sum_{n,t} g_n^t \le \sum_{n,t} g_n^{t,max}$ generation constraint (per type of plant)


Inverse demand function or each node

$$p_n = p_n^{ref} + \frac{1}{\varepsilon} * p_n^{ref} * \left(\frac{d_n^*}{d_n^{ref}} - 1\right)$$

Assumption: Competition

US Trading Points (2011)

Source: U.S. Energy Information Administration, based on Bloomberg. Note: Average spot natural gas prices reported in the map for 2011 are based on data from InterContinentalExchange and vary slightly values reported in the current Short-Term Energy Outlook, which are based on Reuters data.

Moskalenko, Barner, Holz, Löffler, Steigerwald, von Hirschhausen Technische Universität Berlin,German Institute for Economic Research (DIW Berlin), Europe University Flensburg (EUF),NTNU Trondheim **ENTSOG**

Moskalenko, Barner, Holz, Löffler, Steigerwald, von Hirschhausen Technische Universität Berlin,German Institute for Economic Research (DIW Berlin), Europe University Flensburg (EUF),NTNU Trondheim

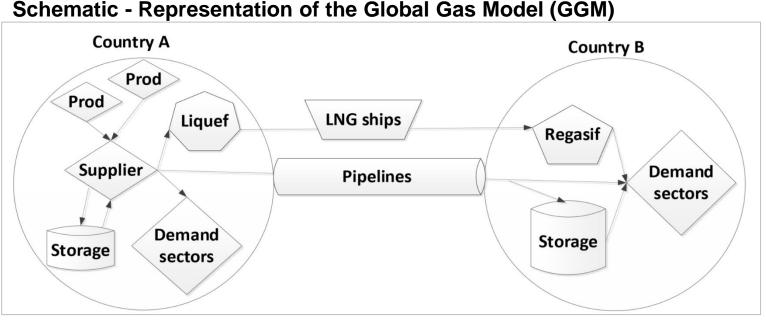
Cross-country Capacities

- Capacities based on data from ENTSO-G
- Larger capacity used for scenarios with bidirectional pipeline capacity
- Some already known investments are included in future years, e.g. German FSRUs
- ➔ Hypothetical simulation where the maximal capacities are used

Region A	Region B	Capacity $A \rightarrow B$	Capacity $B \rightarrow A$
DE	AT	20.99	10.44
DE	BE	12.16	9.91
DE	СН	10.07	5.31
DE	CZ	55.37	37.81
DE	DK	4.18	0.13
DE	FR	18.84	18.84
DE	NL	58.76	74.56
DE	NO	0	67.86
DE	PL	7.17	28.60
AT	IT	35.30	5.94
BE	FR	26.71	8.29
СН	IT	19.66	13.64
FR	ES	5.05	6.89

Table 1: Selection of cross-country capacities for gas pipelines in bcm

1) Introduction

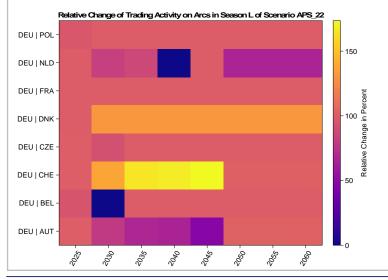

2) Theory and state of Literature

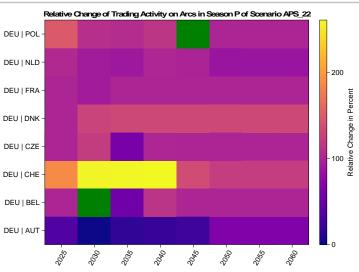
3) Scenarios with the Global Gas Model (GGM)

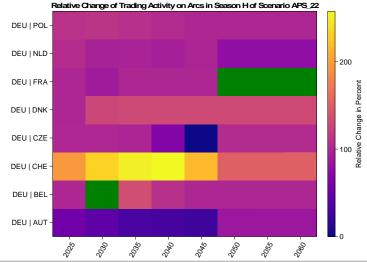
- 4) Scenarios with GENeSYS-MOD
- 5) Discussion and Conclusion

The Global Gas Model (Structural Overview)

- Multi-Period Model of oligopolistic competition in natural gas markets à la Nash-Cournot
- Single commodity partial equilibrium model
- Covering practically the entire global natural gas production and consumption value chain
- Exertion of market power happens via traders that channel production from multiple model nodes (e.g. different regions in the US, Canada or Russia)




Source: https://www.ntnu.edu/iot/energy/energy-models-hub/ggm


First Results with the Global Gas Model (Relative Changes of Trading Activity)

Heat-Maps with indication on relative changes of total cross border trades

- Total trades are defined as the sum of flows from A -> B and B -> A
- A value of 100% indicates that no change in total flow occurs after introducing bi-directionality
- A value of 200% indicates that total trade flows double after allowing for bi-directionality
- A value of 60% indicates that total trade flows between nodes decrease accordingly
- Trading activity between DEU and CHE rises drastically, while trading activity between DEU and AUT decreases

Result – table of Annual German Consumption (BCMA)

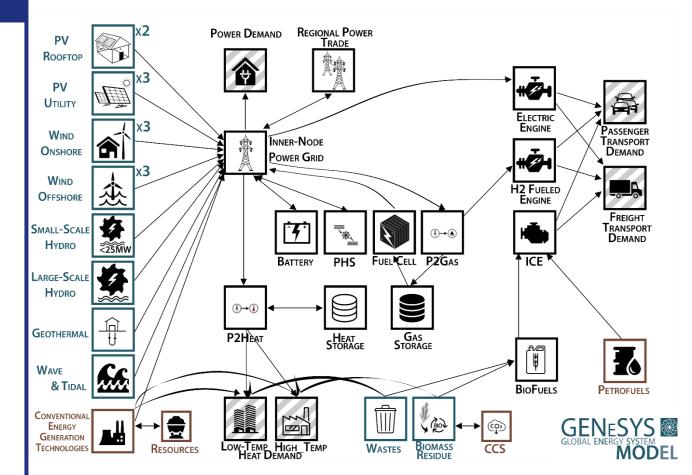
- Annual German Consumption (BCMA) before and after introducing bidirectionality
- While trading activity differs considerably, influences on prices and quantities remain marginal for German markets
- Similar results for the higher demand STEPS_21 scenario
- Howerver, more pronounced results could be expected for introducing the same mechanism in other regions such as Eastern Europe

Year	APS baseline	APS bi-directional
2020	93,62	93,63
2025	75,75	75,78
2030	47,98	48,06
2035	40,98	41,05
2040	33,79	33,83
2045	24,86	24,93
2050	9,62	9,63
2055	9,62	9,63
2060	9,62	9,63

Moskalenko, Barner, Holz, Löffler, Steigerwald, von Hirschhausen Technische Universität Berlin,German Institute for Economic Research (DIW Berlin), Europe University Flensburg (EUF),NTNU Trondheim

Introduction 1)

- 2) Theory and state of Literature
- 3) Scenarios with the Global Gas
- **Scenarios with GENeSYS-MOD** 4)
- **Discussion and Conclusion** 5)

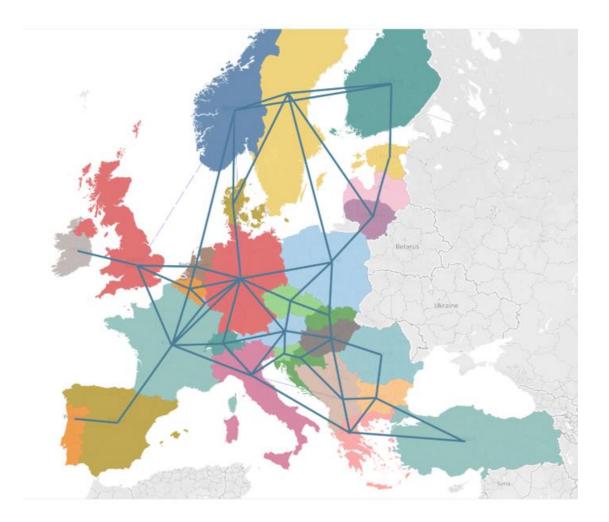

GENeSYS-MOD...

Energy system model resolution

... based on OSeMOSYS and developed since 2016

...publicly available with model, data, and manual¹

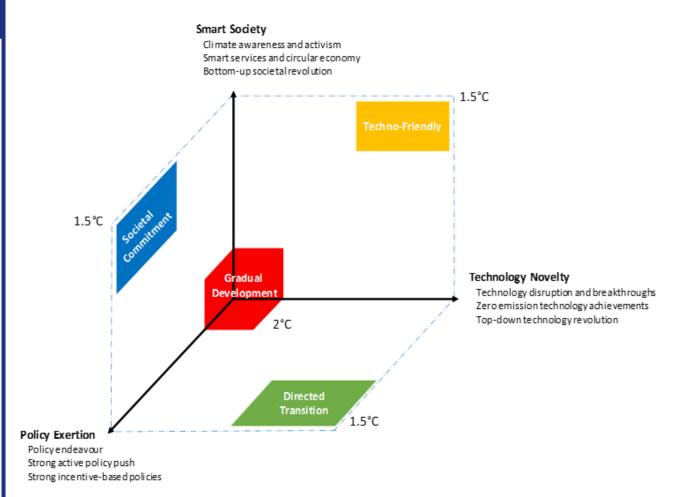
...Results in this presentation (mainly) based on European and German case-studies



¹ <u>https://git.tu-berlin.de/genesysmod/genesys-mod-public</u>

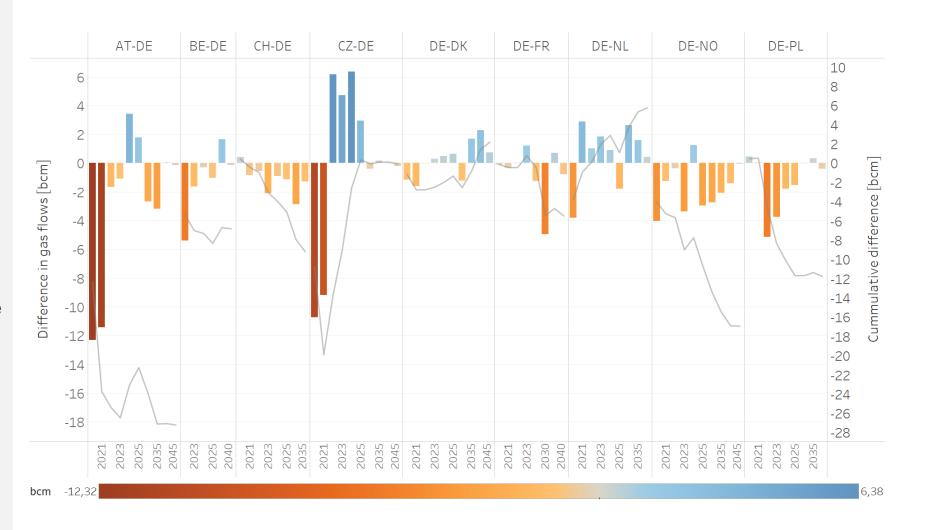
Scenario specific model settings

Spatial and temporal resolution


- Europe disaggregated into 30 regions
 - Mainland EU-25
 - Norway, Switzerland, Turkey, UK
 - Aggregated non-EU Balkan region
- Hourly time-series for renewable potentials and demands
 - Reduced by time-series clustering algorithm^[1]
 - Results in temporal resolution of every 244th hour (35 time slices)

Scenario definition

H2020 Gradual Development Scenario


- Net-zero 2050 following a 2°C pathway
- Combines societal, technological, and political aspects
- Carbon price drives decarbonization
 - 2030: 76.4 €/tCO₂
 - 2050: 355 €/tCO₂
- Reductions in energy demand until 2050
 - Electricity demand 2018: 10.48 EJ
 - Electricity demand 2050: 10.33 EJ

Source: Auer et al 2020

Results

- Difference in gas flows between bidirectional and monodirectional pipeline capacities
- Negative values represent increased gas flows for bidirectional capacities
- The trendline shows the cumulative gas flows

1) Introduction

- 2) Theory and state of Literature
- 3) Scenarios with the Global Gas
- 4) Scenarios with GENeSYS-MOD

5) Discussion and Conclusion

Discussion and Conclusion

- ~ Cross-border flows are an important element of supply security
- ~ However, unidirectional flows seem to modest play a certain role in aggregate analysis
- While trading activity differs considerably, influences on prices and quantities remain small for German markets
- Howerver, more pronounced results could be expected for introducing the same mechanism in other regions such as Eastern Europe
- ~ Some inconsistencies observed, in both models
- ~ More in-depth analysis of scenarios requires
- ~ Eventually pipeline-specific analysis for each node / country