

A novel approach to generate bias-corrected regional wind infeed timeseries based on reanalysis data

•

Yannik Pflugfelder, Hendrik Kramer, Christoph Weber ENERDAY Dresden, 5th May 2023

UNIVERSITÄT DUISBURG ESSEN

Motivation

Motivation – Methods – Data – Results – Final remarks

- Power system modeling and scenario generation needs accurate models dealing with realistic wind speeds
- Generation of wind power supply timeseries is strongly affected by **data availability**
 - Wind speed measurements on hub height barely/not publicly accessible
 - Weather station measurement data are not representative for different landscapes
 - → (imperfect) **Reanalysis weather models** are often used
- Create long-term weather data using numerical weather prediction models and assimilating historical data Consistent dataset of atmospheric parameters in spatial and temporal resolution

UNIVERSITÄT

- Limited representation of local topography
- Reduction of erroneous wind speed simulation with **local** bias correction
 - So far only based on spatially aggregated information
 - now on turbine level _

UNIVERSITÄT Bottom-up simulation on wind power using reanalysis data D_U_I_S_B_U R G **Open-**Minded Motivation – Methods (I/III) – Data – Results – Final remarks on hub height based on 10 and 100m wind speeds Wind speed multiplied by P Infeed timeseries Filtered Clustered Orginial Powercurve data data data • $P_j(t) = \frac{P_k^{powercurve}(v_{hh}(t))}{\max \{P_k^{powercurve}\}} \cdot P_j^{netPower} \cdot \eta$ $\forall t \in \mathcal{T}$ 8 turbine types according to net power rating, hub height and rotor diameter $-\eta$: assumed factor for technical unavailability

- $P_j^{\text{simulated}}(t) = P_j(t) P_j^{\text{curtailment}}(t)$
 - Curtailment in case the electrical grid cannot handle the high amount of wind infeed

Local factors

Motivation – Methods (II/III) – Data – Results – Final remarks

- Identification of relevant local aspects that cause a deviation between measured wind infeed and simulated data. Factors indicate spatial characteristics to some degree.
 - Height above sea level
 - Hilliness of the surroundings (a)
 - Distance to sea
 - Amount of turbines nearby (b)
 - Turbine specifications (hub height, rotor diameter, net power rating) (c)

UNIVERSITÄT

D_U_I_S_B_U R G

Bias correction for full load hours

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Motivation – **Methods (III/III)** – Data – Results – Final remarks

- Verification of the results by comparing
 - $-\Delta FLH^{simulated}$: deviations in FLH in the simulated (uncorrected) model
 - $\Delta FLH_{base,target}$: deviations in the bias-corrected model.

Data

UNIVERSITÄT D_U I S_B U R G E S S E N Open-Minded

Motivation – Methods – Data – Results – Final remarks

Wind speed on 10 and 100m in 0.25°x0.25° grid	ERA 5 Reanalysis					
Turbine Data	Bundesnetzagentur MaStR Marktstammdatenregister					
Power curves	E WINDPOWER Wind Energy Market Intelligence					
Local properties	eurostat information and maps					
	Bundesamt für Kartographie und Geodäsie WMS Digitales Geländemodell Gitterweite 200 m					
Energy production	NETZTRANSPARENZ.DE Informationsplattform der deutschen Übertragungsnetzbetreiber					
Curtailment	avacon e.dis Schleswig-Holstein Netz					

➢ Extensive dataset of

- 22,969 turbines in 2016 (BNetzA: 26,057)
- 25,430 turbines in 2020 (BNetzA: 28,579)
- 26,018 turbines in 2021 (BNetzA: 28,818)

Regression estimates

Motivation – Methods – Data – **Results (I/III)** – Final remarks

Regression estimates for 2016, 2020 and 2021

	2016 ERA5		2020 ERA5		2021 ERA5		
	Estimate	tStat	Estimate	tStat	Estimate	tStat	
Intercept (β_0)	789.977	12.726 ***	886.817	14.265 ***	786.948	14.689 ***	
Height above sea	0.792	7.009 ***	0.446	4.503 ***	0.565	6.890 ***	
Hilliness of the	-75.938	-5.115 ***	-37.051	-2.866 **	-44.673	-3.953 ***	
surroundings							
Distance to sea	-1.692	-14.339 ***	-1.536	-14.355 ***	<mark>-1.414</mark>	<mark>-15.891</mark> ***、	
Amount of turbines	0.691	2.173 **	1.010	3.673 ***	1.137	4.586 ***	
around							
Hub height	-1.347	-3.048 **	-1.714	-4.328 ***	-2.007	-5.750 ***	
Rotor diameter	-1.674	-1.699	-2.907	-3.790 ***	-2.212	-3.419 ***	
Net power rating	0.104	4.727 **	0.102	5.359 ***	0.094	5.538 ***	
R ²	0.271		0.251		0.271		
RMSE		348		372		321	

 R², RMSE and parameter estimates of all models lie in the same order of magnitude

UNIVERSITÄT

DUSSBURG

Open-Minded

 All parameters are significant, except the rotor diameter of 2016

> e.g.: the further we move away from the sea, the less is corrected

* p<0.05, ** p<0.01, *** p<0.001

Step-forward prediction

Motivation – Methods – Data – **Results (II/III)** – Final remarks

Bias-correction from base to simulation year

Base year	2016	2016	2020
Target year	2020	2021	2021
Measured production prod ^{TSO} [TWh]	82.670	75.480	75.480
Simulated production prod simulated [TWh]	98.460	87.880	87.880
Corrected production prod _{base,target} [TWh]	87.200	76.330	71.750
Full load hour deviation $\Delta FLH_{base,target}$ [h]	101.010	18.178	-79.771
$\epsilon^{simulated} = (prod^{simulated} - prod^{TSO}) / prod^{TSO}$	0.191	0.164	0.164
$\epsilon_{base,target} = \left(prod_{base,target} - prod^{TSO} \right) / prod^{TSO}$	0.055	0.011	-0.049
$\epsilon_{impr} = \left(\left \epsilon^{simulated} \right - \left \epsilon_{base,target} \right \right) / \left \epsilon^{simulated} \right $	0.713	0.931	0.699

 With base year regression estimates, the deviation in the target year can be estimated for each turbine. The simulated infeed is corrected by this estimated deviation.

UNIVERSITÄT

- In all cases, an application of bias-correction based on local indicators reduces the error of the reanalysis-based output simulation
 - Regression estimates from 2016 lead to an error reduction of 71.3 % (2020) and 93.1 % (2021)
 - Regression estimates from 2020 lead to an error reduction of 69.9 % (2021)

Site-specific and regional results

Motivation – Methods – Data – Results (III/III) – Final remarks

- Compare deviation of full load hours between simulated (left side) and bias-corrected (right side) model with TSO information. Here: 2020 with estimates of 2016
- Red color indicates an overestimation, blue color an underestimation of the model

- Site-specific
 - Number of large overestimations reduced
 - Unsystematic pattern after local bias correction → no structural bias after applying the model

05 May 2023

- Regional (NUTS 3)
 - Great improvements in northern regions with many installed turbines
 - Good improvements in most regions of central Germany
 - Some southern regions: model increases deviation (but regions have low output)

Final remarks

Motivation – Methods – Data – Results – Final remarks

- Our model improves bottom-up simulated data for energy system modelling and depicts infranational differences and local distortions better than previous bias-correction methods
- We obtain promising results for different combinations of base and target years: factors can be applied for other target years given that geographical and technical circumstances remain sufficiently the same.
- The multilinear regression is a suitable abstraction from complex physical flows and can be applied as good bias-correction without extensive modelling of the aerodynamics in the boundary layer of the atmosphere.
- Limitations:
 - Simulated timeseries are based on reference turbine properties.
 - Several shut-off events of turbines are not modelled (regulatory, network-based, market-based, animal protection,...).
 - Study focuses on Germany. Transferability to other climate regions requires further research.

References (I/II)

Holttinen, H. Wind Integration: Experience, Issues and Challenges. [Buchverf.] Peter Lund, et al. Advances in Energy Systems: The Large-scale Renewable Energy Integration Challenge. 2019.

Davidson, M. und Millstein, D. Limitations of reanalysis data for wind power applications. Wind Energy. 25, 2022, Bd. 9.

ENTSO-E. Mid-term adequacy Forecast Appendix 2. *Methodology*. [Online] 2019. [Zitat vom: 22. 11 2022.] https://eepublicdownloads.entsoe.eu/clean-documents/sdc-documents/MAF/2019/MAF-2019-Appendix_2-Methodology.pdf.

Ren, Guorui, et al. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Applied Energy. 204, 2017.

Emeis, Stefan. Current issues in wind energy meteorology. Meterological Applications. 2014.

Olauson, Jon. ERA5: The new champion of wind power modelling? *Renewable Energy*. 126, 2018.

Petersen, Erik, et al. Wind Power Meteorology. Part II:Siting and Models. Wind Energy. 1, 1998.

Gruber, Katharina, et al. Towards global validation of wind power simulations: A multi-country assessment of wind power simulation of MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas. *Energy*. 238, 2022.

Gupta, S und Nema, R. A Critical Review on Wind Turbine Power Curve Modelling Techniques and Their Applications in Wind Based Energy Systems. Journal of Energy. 2016.

Kaspar, Frank, et al. Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy. *Adv. Sci. Res.* 2020.

Hersbach, Hans, et al. The ERA5 global reanalysis. *Copernicus Climate Change Service, Climate Data Store*. [Online] [Zitat vom: 1. 10 2022.] cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview.

Rao, Kamisetty. Wind Energy for Power Generation. Cham : Springer, 2019.

Brune, Sebastian, Keller, Jan D. und Wahl, Sabrina. Evaluation of wind speed estimates in reanalyses for wind energy applications. *Advances in Science and Research*. 2021, 18, S. 115–126.

Murcia, Juan, et al. Validation of European-scale simulated wind speed and wind generation time series. Applied Energy. 305, 2022.

Jourdier, Bénédicte. Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France. Adv. Sci. Res. (Advances in Science and Research). 17, 2020.

References (II/II)

Pöstges, Arne und Weber, Christoph. *Identifying key elements for adequate simplifactions of investment choices -- the case of wind energy expansion.* s.l. : HEMF Working Paper No. 01/2021, 2021.

Browner, Michael. Wind Resource Assessment: A Practical Guide to Developing a Wind Project. s.l. : John Wiley & Sons, Inc. , 2012.

White, Halbert. A heteroskedasticity-consistent convariance matrix estimator and a direct test for heteroskedasticity. *Economietrica*. 48, 1980.

Bundesnetzagentur. Marktstammdatenregister. [Online] [Zitat vom: 1. 10 2022.] https://www.marktstammdatenregister.de/MaStR/.

The Wind Power. Databases and Reports. [Online] [Zitat vom: 1. 10 202.] www.thewindpower.net.

eurostat. GISCO: Geographical Information and maps. [Online] https://ec.europa.eu/eurostat/en/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts.

Bundesamt für Kartographie und Geodäsie. WMS Digitales Geländemodell Gitterweite 200 m (wms_dgm200). [Online] 2019. https://gdz.bkg.bund.de/index.php/default/wms-digitales-gelandemodell-gitterweite-200-m-wms-dgm200.html.

Netztransparenz.de. Informationsplattform der deutschen Übertragungsnetzbetreiber. [Online] [Zitat vom: 1. 10 2022.] www.netztransparenz.de.

Avacon. Einspeisemanagement - Abgeschlossene Maßnahmen. [Online] [Zitat vom: 1. 10 2022.] https://www.avacon-netz.de/de/energie-einspeisem/einspeisemanagement/veroeffentlichungen/abgeschlossene-massnahmen.html#.

E.dis-Netz. Einspeisemanagement - Abgeschlossene Maßnahmen. [Online] [Zitat vom: 1. 10 2022.] https://www.e-dis-netz.de/de/energie-einspeisen/einspeisemanagement/veroeffentlichungen/abgeschlossene-massnahmen.html.

Sh-Netze. Einspeisemanagement - Abgeschlossene Maßnahmen. [Online] [Zitat vom: 1. 10 2022.] https://www.sh-netz.com/de/energie-einspeisen/einspeisemanagement/veroeffentlichungen/abgeschlossene-massnahmen.html.

Bundesnetzagentur, Bundeskartellamt. Monitoringbericht 2022. 2022.

ENTSO-E. Transparency Platform, Actual Generation per Production Type. [Online] 2021. [Zitat vom: 3. 11 2022.] https://transparency.entsoe.eu/.

Jung, Christopher und Schindler, Dirk. The role of the power law exponent in wind energy assessment: A global analysis. Interantional Journal of Energy Research. 45, 2021, 6.

—. On the inter-annual variability of wind energy generation – A case study from Germany. Applied Energy. 230, 2018.

Deutscher Wetterdienst. COSMO Regional Reanalysis. [Online] [Zitat vom: 1. 10 2022.] https://reanalysis.meteo.uni-bonn.de/?COSMO-REA6.

European Union, Copernicus Land Monitoring Service. s.l.: European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA), 1. 10 2022.

Thank you for your attention!

M.Sc. Yannik Pflugfelder House of Energy Markets and Finance University of Duisburg-Essen R11 T07 C25 | Universitätsstraße 12 | 45141 Essen | Germany Tel. +49 201/183-6458 Email: Yannik.Pflugfelder@uni-due.de www.ewl.wiwi.uni-due.de

