Smart Network Tariffs: Managing Demand Peaks in Residential Electricity Distribution

Roman Hennig, PhD Researcher at TU Delft

Supervisors: Prof. Dr. ir. Laurens de Vries Dr. Simon Tindemans

Enerday Dresden, May 5th 2023

Part 1: Problem Description

Starting Point: strong increases in flexible loads in residential sector

Source: ElaadNL Outlook 2021

Around 20% of heating needs are met by heat pumps in 2030 in the APS, with China, North America and Europe remaining the leading markets

Source: IEA Report, The Future of Heat Pumps

Problem: Increasing "Peakiness" of loads can lead to network congestion

Flexibility could be used: Often it's not a question of feasibility, but *coordination*

Source: ElaadNL Outlook 2021

TUDelft

Objective and Toolbox

- Objective:
 - Find coordination mechanism that removes network congestion at low cost (a.k.a.: congestion management)
- "Toolbox":
 - Smart network tariffs
 - Redispatch (local markets for flexibility)
 - Demand response programs (direct control)

Forthcoming paper: Hennig et al., "Congestion Management Options in Electricity Distribution Grids", preprint submitted to Utilities Policy

Dilemmas in Network Congestion: Discrimination

Source: capaciteitskaart.netbeheernederland.nl

Dilemmas in Network Congestion: Information Asymmetry

- Network operator does not know:
 - When users are planning to use the network
 - How much they value using the network

© - Economicshelp.org 2023

Part 2: Possible Solutions

Possible Solution: Local Flexibility Market for Redispatch

- In congested areas, customers (or aggregators) are paid to reduce consumption by the network operator
- Problem: information asymmetry may lead to undesirable strategic behaviour of profit-oriented market actors

• E.g., schedule manipulation and market power:

Source: <u>Hennig et al., Market failures in local flexibility markets, EEM 2022</u>

Network limit

Delft

Possible Solution: Demand Response Programs

- Utility company gives direct credit in exchange for the option to curtail loads
- E.g.: "On-Call" program by Florida's public utility:
- Problems (in unbundled power systems like the European):
 - interferes with portfolio of energy provider
 - Difficult to use flexibility for other purposes (e.g. TSO services)
 - Network operator may curtail when it is very inconvenient for user (information asymmetry)

Network Tariffs and Congestion Management

- LFMs and DR programs are added on top of network tariff
- Network tariffs are charged by the operator for building and maintaining the network.
- In addition to cost-recovery, they could also be used to incentivize smart network usage.
- "Smart" tariffs integrate congestion
 management to a varying degree

Possible Solution: Dynamic Tariffs (Local)

- Prices increases only for congested areas
- Increasing prices are intended to prevent network overload

Benefit:

- Reveals network valuation of users
- Targets congested areas explicitly

Problems:

- Spatial price discrimination
- Regressive
- No guarantee on congestion removal

Possible Solution: Dynamic Tariffs (Network-wide)

- Prices increase for everyone when congestion appears in isolated areas
- Increasing prices are intended to prevent network overload

Benefit:

- Reveals network valuation of users
- No spatial price discrimination

Problems:

- Inefficient price increases
- Regressive
- No guarantee on congestion removal

Possible Solutions: Capacity Subscription Tariff

 Users sign up for a chosen amount of network capacity. Within this capacity they can use the network at a low charge. Above: higher charge

Under Development: 2-part variable Capacity Subscription

- Users sign up for a 2-part subscription:
 - A "Base" subscription that has a higher price and gives guaranteed capacity
 - A "variable" added subscription at lower price per kW of capacity, but this can be curtailed during network congestion by the network operator
- Benefits: Better reveals users' network valuation, more available network capacity when there is no congestion

Assessment of Network Tariffs

- Network tariffs are expected to fulfil a range of objectives: Cost-recovery, cost-reflectiveness, non-discrimination, efficiency, simplicity
- Whether they fulfil these objectives can be assessed by defining indicators and measuring them in simulations or real-world case studies

Hennig et al., "What is a good distribution network tariff?—Developing indicators for performance assessment", https://www.sciencedirect.com/science/article/pii/S0306261922005554

Tariff	Cost-refl.	Cost-refl.	Efficiency	Simplicity
	low EV	high EV	high EV	
Fixed				+ +
Vol. Day-Night	+ +	-		+
Capacity Subscription	+	+ +	+ +	-
Mixed Capacity-ToU Vol.	+ /+ +	+	+	

Table 4: Comparative assessment of the performance of the four tariffs relative to each other.

16

Summary and Conclusion

- The increasing "peakiness" of loads that comes with electrification of personal transport (EVs) and heating (heat pumps) leads to network congestion.
- There is no perfect solution to this problem, need to compromise.
- "Smart" network tariffs are a good option in the European context.
- We think a capacity subscription tariff is a good solution. It can be further improved by dividing the subscribed capacity in "base" (guaranteed) capacity and variable capacity.
- Network tariffs have to fulfil are range of objectives, which can be conflicting. Thus, a careful assessment is necessary.

Questions, Comments?

Backup Slides

Comparison of Solutions

Table 1: The dilemmas of network congestion in different methods					
	Discrimination	Info. asymmetry	Complexity		
Dynamic net- work prices	Translated to ex- plicit price-based discrimination.	Removed: network users are forced to reveal network val- uation in near real- time.	Complex: price vari- ations may lead to bill shock. Flexible users with SEMS may be able to react better.		
LFMs for congestion	Effectively removed: users can be made indifferent between congested and non- congested areas through LFM pay- ments.	Misrepresentation of information can inflate prices and worsen the conges- tion problem.	Simple for non- flexible users. Imple- mentation complex- ity can be handled by DSOs, aggrega- tors and SEMS.		
Capacity sub- scriptions	Removed: in stan- dard version, the subscription con- tract is equal every- where.	Partially removed: network capacity valuation revealed in long-term con- tract, no short-term adjustments.	Relatively simple: predictable, but re- quires to educate users about the ca- pacity subscription concept.		

Assessment Framework

• Our contribution:

Delft

- Framework with performance indicators for regulatory objectives.
- Possible indicators (examples):
 - Cost contribution / network charge per user
 - Total cost / revenues for network operator
 - Network overload events
 - Simplicity (for EV/Heat pump owners and "non" owners)

Tariffs and Congestion Management Design Variables (examples)

Design Variable	Regular Connection (fixed)	Non-firm connections	"Pay-to-Reduce" Markets	Dynamic Tariff			
Offer vs. buy-back network access	Offer	Offer	Buy-back	Offer			
Time-frame for mechanism	Yearly	Yearly contract Day-ahead/real-time activation	Day-ahead/real-time	Day-ahead/real-time			
Firm vs. non-firm access	Firm	Non-firm	Firm	Firm			
Traded product	Network Capacity	Network Capacity	Load reduction (to baseline or current consumption)	Energy			
Simple, but not adaptable Adaptable, but vulnerable to strategic behaviour							

