

Effects of distortions in end-user tariffs on long-run equilibria with a high share of Prosumage households

<u>Felix Meurer</u>, Marco Breder, Christoph Weber Enerday 2024 Dresden April 12, 2024

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

- Recent trends show a rise in investments in PV battery systems, highlighting the growing significance of decentralized flexibility.
- Private households are encouraged to maximize self-consumption due to the current design of retail tariffs.

What are the effects of distortions in end-user tariffs on long-run equilibria with a high share of Prosumage households?

We examine this question by considering:

- Endogenous investments from both the wholesale and prosumer side
- Consideration of realistic market conditions
- Different retail and feed-in tariffs

Agenda	UNIVERSITÄT De U I S B U R G E S S E N Offen im Denken
Motivation	1
Methodology	2
Data	3
Results	4
Conclusion	5

12.04.2024

Modeling Framework

Motivation - Methodology - Data - Results - Conclusion

Iteration of two LPs

• Two iteratively coupled linear programs to combine the optimization calculus of decentralized actors at the retail level with cost minimization at the wholesale level.

12.04.2024

UNIVERSITÄT

Offen im Denken

Distortions through tariffs I/II

UNIVERSITÄT D_U I_S_B_U_R_G E_S_S_E_N Offen im Denken

Motivation - Methodology - Data - Results - Conclusion

- The starting point is the market equilibrium without distortions (pure market)
- Based on this, we consider four distortions:
 - 1. Time-independent retail tariffs (TIRT)
 - 2. Fixed feed-in tariffs (FFIT)
 - 3. Surcharges on retail tariff (SORT)
 - 4. Surcharges on feed-in tariff (SOFT)

Distortions through tariffs II/II

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Motivation - Methodology - Data - Results - Conclusion

- 16 possible combinations
- We focus on 6 of the 16 cases
 - 1. No Distortions
 - 2. TIRT Only
 - 3. SORT Only
 - 4. FFIT Only
 - 5. SOFT Only
 - 6. All Distortions

12.04.2024

Indicators

Motivation - Methodology - Data - Results - Conclusion

Prosumer level

 The rate of self-consumption (RSC) is determined by the relation between selfconsumed electricity and PV-generation.

$$RSC = \frac{\sum_{t=1}^{T} Q_{t,y}^{SC} \cdot \Delta t}{\sum_{t=1}^{T} (PV_t \cdot (1 - \alpha) - PV_{t,y}^{Curt}) \cdot \Delta t}$$

System level

- System costs
- Endogenous CO2-Price
- Capacity investments

 The rate of self-sufficiency (RSS) is defined by the share of the load consumption that is supplied by direct-consumption and electricity discharged from the storage.

$$RSS = \frac{\sum_{t=1}^{T} (Q_{t,y}^{DC} + Q_{t,y}^{StoOut}) \cdot \Delta t}{\sum_{t=1}^{T} D_t \cdot \Delta t}$$

cf. Dietrich, A., & Weber, C. (2018). What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany. *Energy Economics*, 74, 399-416.

12.04.2024

Parameterization

Motivation - Methodology - Data - Results - Conclusion

Database (all open access)

- AGORA-Study "Towards a climateneutral Germany by 2045"
- Open-Power-System-Data
- BDEW-standard load profiles

Target year	2030
Gross electricity consumption	643 TWh
thereof priv. households	129 TWh
Number of priv. households	41 million
thereof Prosumage households	10 million
Emission cap energy industry	88.2 Mt CO ₂ e
PV potential Prosumage households	100 GW

Tariff parameterization

- TIRT
 - (weighted) average wholesale market price
- FFIT
 - based on solar market value
- SORT
 - Historical value based on Monitoring report 2023, Federal Network Agency
- SOFT
 - Delta between "EEG"-feed-in tariff and market value

Capacities

Motivation – Methodology – Results – Conclusion

- **TIRT** creates an incentive for Prosumage households to invest in PV.
- The **FFIT** has no effect (at this level here).
- SORT creates a stronger incentive to invest in PV than the TIRT and we are even seeing investment in storage.
- In the SOFT case, the incentive to feed in is so great that households invest in 70 GW of solar and nothing in storage.
- The combination of **all distortions** leads to even greater investment in solar and some in battery storage.

Prosumage

Motivation – Methodology – Results – Conclusion

Prosumage KPIs

- TIRT creates an incentive to consume a large proportion of the electricity generated themselves.
 - However, the proportion of total electricity consumption is low.
- SORT reduces demand from prosumers and also promotes self-consumption.
 - In addition, it encourages self-sufficiency by passing on timedependent prices.
- In the **SOFT-Only** case, the incentive to feed in is so great that nothing is consumed or stored.
- The combination of all distortions leads to very large quantities of electricity generated by prosumers. This is reflected in the low rate of self-consumption, as a large surplus is fed into the grid.

System Level

Motivation – Methodology – Results – Conclusion

- The **total system costs** are lowest in the case without any distortion and highest in the case with all distortions at the same time.
- The introduction of FFIT has no effect and therefore no effect on system costs.
- We see the highest CO₂ price in the SORT-Only case, as the prosumer behavior leads to a slightly higher demand for time-independent (here CCGT) generation capacity.

UNIVERSITÄT

D U I S B U R G E S S E N

Offen im Denken

Conclusion

Motivation – Methodology – Results – Conclusion

Distortions in end-user tariffs lead to significant shifts in Prosumage household behavior and system dynamics.

- Incentives from distortions like SORT significantly boost Prosumer PV investment.
- While some tariffs promote battery storage investment by enhancing the value of selfconsumption, others, particularly SOFT, divert focus solely to solar generation due to lucrative feed-in incentives.
- The application of these tariffs increases overall system costs, peaking when all distortions are present simultaneously.

References

- Bernath, C., Deac, G., & Sensfuß, F. (2021). Impact of sector coupling on the market value of renewable energies–A model-based scenario analysis. *Applied Energy*, 281, 115985.
- Bertsch, V., Geldermann, J., & Lühn, T. (2017). What drives the profitability of household PV investments, self-consumption and self-sufficiency?. *Applied Energy*, 204, 1-15.
- Dietrich, A., & Weber, C. (2018). What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany. *Energy Economics*, 74, 399-416.
- Fridgen, G., Keller, R., Körner, M. F., & Schöpf, M. (2020). A holistic view on sector coupling. *Energy Policy*, 147, 111913.
- Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., & Ruiz, C. (2012). Complementarity modeling in energy markets (Vol. 180). Springer Science & Business Media.
- Günther, C., Schill, W. P., Zerrahn, A. (2021). Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects. *Energy Policy*, 152 (2021), 112168.
- Kappner, K., Letmathe, P., & Weidinger, P. (2019). Optimisation of photovoltaic and battery systems from the prosumer-oriented total cost of ownership perspective. *Energy, Sustainability and Society*, 9(1), 1-24.
- Schill, W. P., Zerrahn, A., & Kunz, F. (2017). Prosumage of solar electricity: pros, cons, and the system
 perspective. *Economics of Energy & Environmental Policy*, 6(1), 7-32.

Thank you for your attention!

Felix Meurer, M.Sc.

Lehrstuhl für Energiewirtschaft House of Energy Markets and Finance Universität Duisburg-Essen Universitätsstraße 12| 45141 Essen | Germany Email: <u>Felix.Meurer@uni-due.de</u> <u>www.ewl.wiwi.uni-due.de</u>

