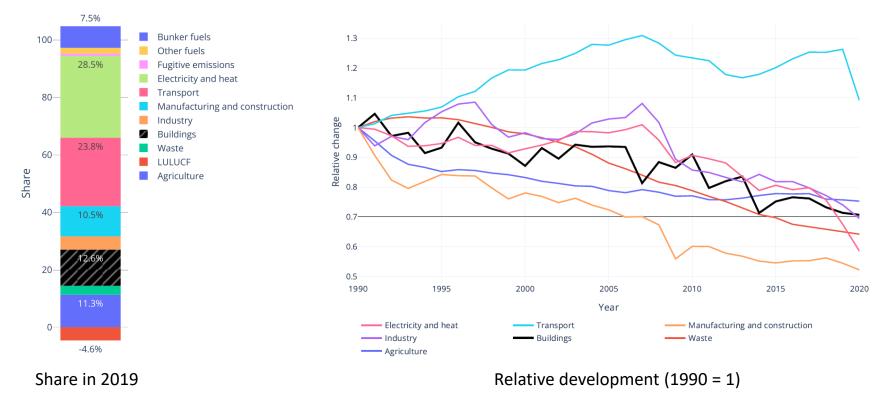
Power sector impacts of a simultaneous European heat pump rollout

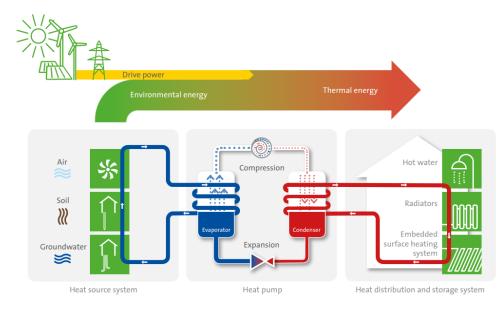
Alexander Roth

German Institute of Economic Research (DIW Berlin) & TU Berlin

ENERDAY 2024 – 12. April 2024



Bundesministerium für Bildung und Forschung


GEFÖRDERT VOM

Importance of heating for decarbonization

Sectoral GHG emissions in the EU 27 Source: Own illustration based on Ritchie et al. (2023)

Heat pumps are central technology

Working principle of a heat pump

Source: European Heating Market Report 2021 (EHI)

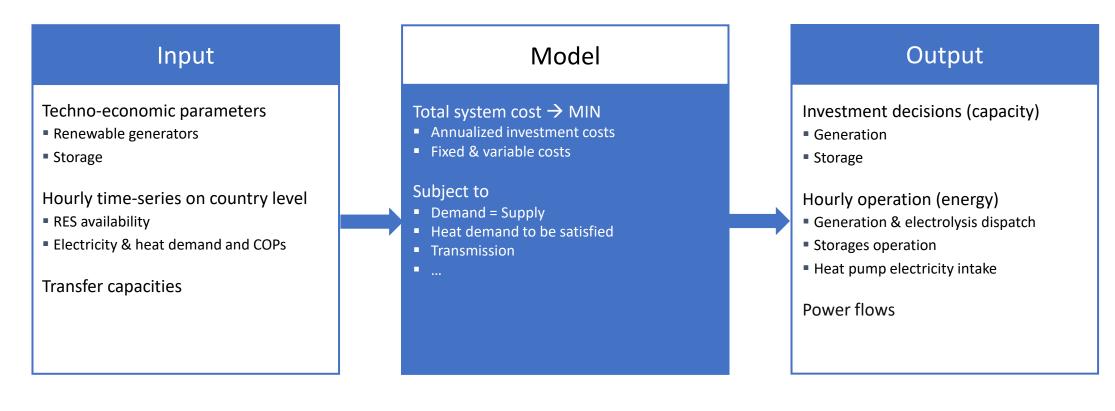
Country	Year	Target
European Union	2030	30 million additional heat pumps installed compared with 2022
Belgium	2030	Final energy consumption by heat pumps to increase fivefold over 2018
France	2023	Reach 2.7 million to 2.9 million total heat pumps installed
Germany	2024	Install 500 000 heat pumps per year
Germany	2030	Reach a heat pump stock of 6 million
Hungary	2030	Final energy consumption by heat pumps to increase sixfold over 2020
Italy	2030	Final energy consumption by heat pumps to increase twofold over 2017
Poland	2030	Final energy consumption by heat pumps to increase threefold over 2020
Spain	2030	Final energy consumption by heat pumps to increase sixfold over 2020
United Kingdom	2028	600 000 annual heat pump installations

Sources: European Commission (2022b); France, Ministry of Ecological Transition (2022); Clean Energy Wire (2022); GOV.UK (2020); Government of Italy (2019); Government of Spain (2019); Toleikyte and Carlsson (2021).

Selected European policy targets for heat pump deployment

Source: The Future of Heat Pumps (IEA, 2022)

Pros	Cons
Efficiency	Increase of peak loads
Integration of renewable energy	Increased electricity demand in winter
Direct use of electricity	Local grid needs


Research question

What is the impact of a <u>simultaneous</u> heat pump roll-put in several European countries?

What is impact of flexibility options, namely thermal heat storage?

Model

- Power sector model (DIETER): linear cost-optimization
- Solves for all 8760 consecutive hours of the year

Assumptions

- Target year: 2030
- Geography: nine European countries (CH without HP demand)
- **Grid:** copperplate within country, simple exchange between countries; values from ERAA 2021 (year 2025)
- Weather resilience: six weather years (2009-2014)
- Capacity bounds from ERAA 2021 (year 2025)
 - Lower bounds for renewables and gas
 - Upper bounds for other fossil generators
 - Hydro and nuclear power fixed
 - Storage (batteries and hydrogen) free
- CO2 price: 150€

Heating assumptions

- Domestic heat covers space and water heat demand
- Share of heat demand to be covered by heat pumps
 → exogenously set to 25%
- Only air-sourced heat pumps
- Same technology and share for single-, multi-family, and commercial buildings
- Run system-friendly: react to wholesale prices
- Assumed to be additional heat demand

Data

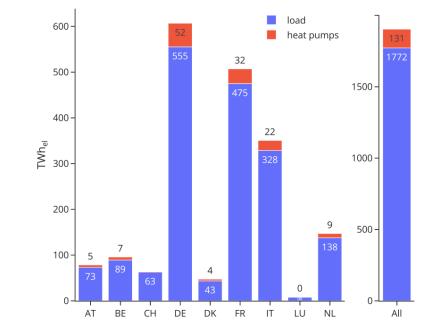
- Heat: When2Heat database (Ruhnau et al, 2019))
 - Hourly space and water heat demand for all EU countries
 - Hourly COPs for different HP technologies
- Renewable time series: PECD 2021.3 (used in ERAA 2021)
 - Wind (on- and offshore), PV, and hydro run-of-river capacity factors
 - Hydro inflow time series reservoir and pumped-hydro
- Demand: ERAA 2021 (year 2030)

Scenarios

Definition of *base* scenarios

Heat share	E/P ratio of thermal storage
0%	-
25%	0
25%	2

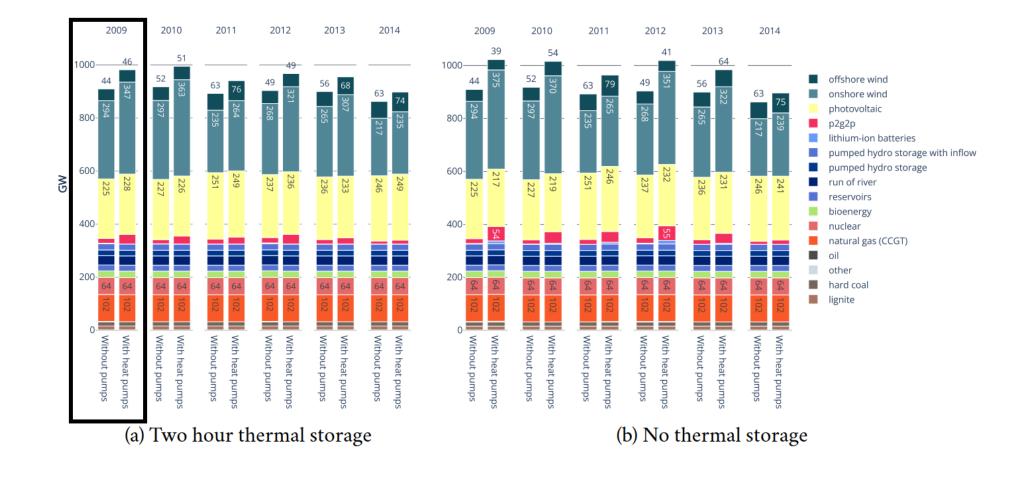
Heat demand defined as additional heat
demand.

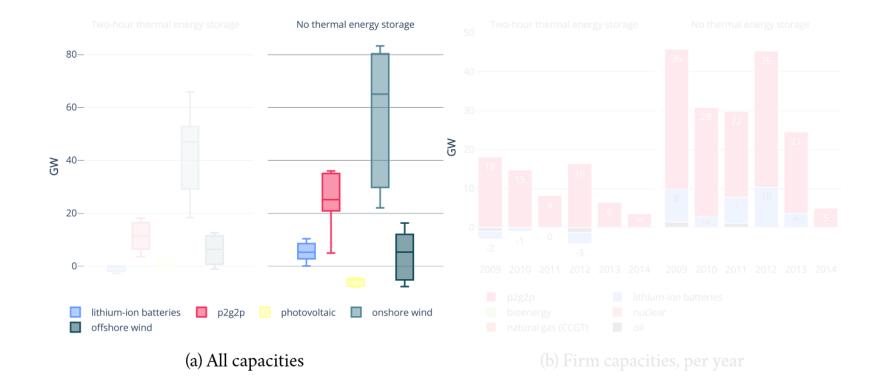

Robustness checks

Scenario	Scenario
gas_free	No capacity (lower or upper) for gas-fired power plants.
half_nuc	Nuclear power plant capacities fixed at 50% lower value compared to base.
no_coal	No hard coal or lignite power plants.
no_ntc	No electricity flow between countries.
wind_cap	Upper bounds for on- and offshore wind power capacity at 50% above ERAA 2021 values.

Results

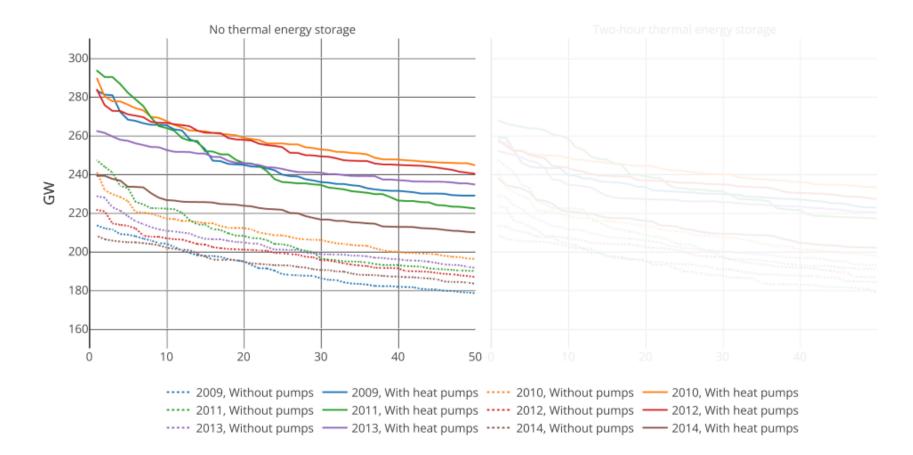
Heat pump capacities and demand


Country	Heat output (GW _{th})	Heat storage (GWh _{th})	Electricity input (GW_{el})
AT	5.5	11.0	3.5
BE	8.8	17.7	5.1
CH	0.0	0.0	0.0
DE	63.8	127.5	39.7
DK	3.9	7.8	1.9
FR	41.1	82.2	20.9
IT	29.2	58.4	13.9
LU	0.7	1.3	0.4
NL	12.5	25.0	6.8
All	165.4	330.9	92.0

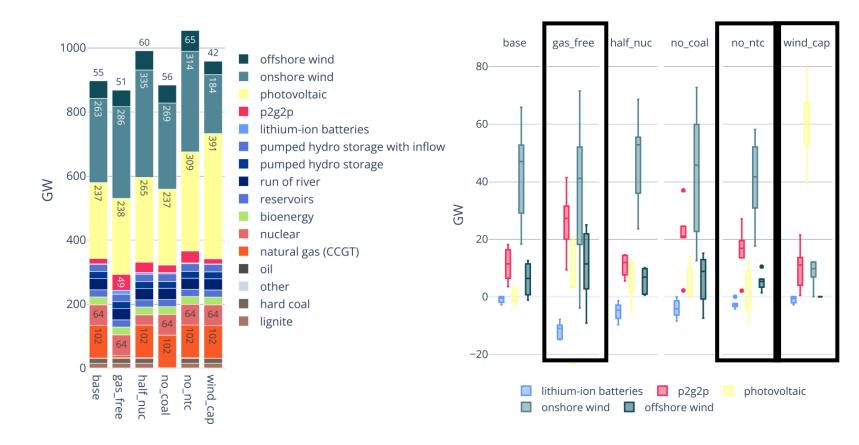

Capacities

Electricity demand

Capacities



Additional capacities


- Wind power expansion
- Additional storage
- Thermal storage:
 - Reduces need for firm capacity
 - Substitute for batteries
- Strong weather variability

Peak loads

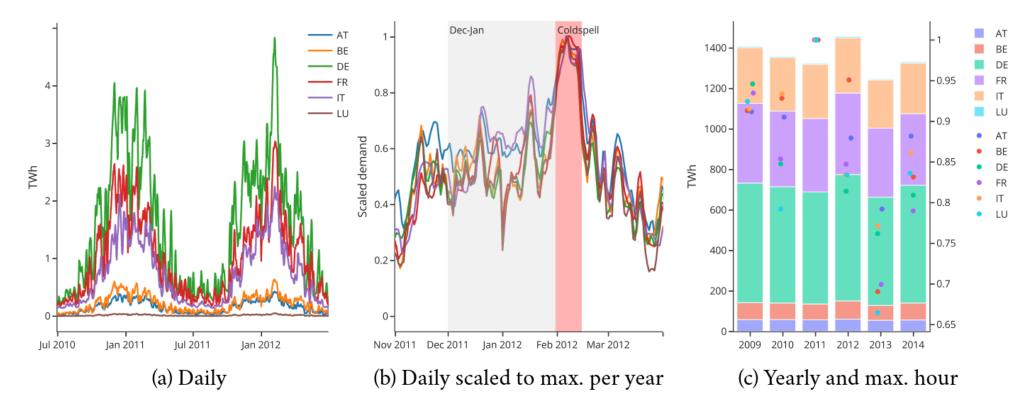
Load duration curves

Robustness: Capacities

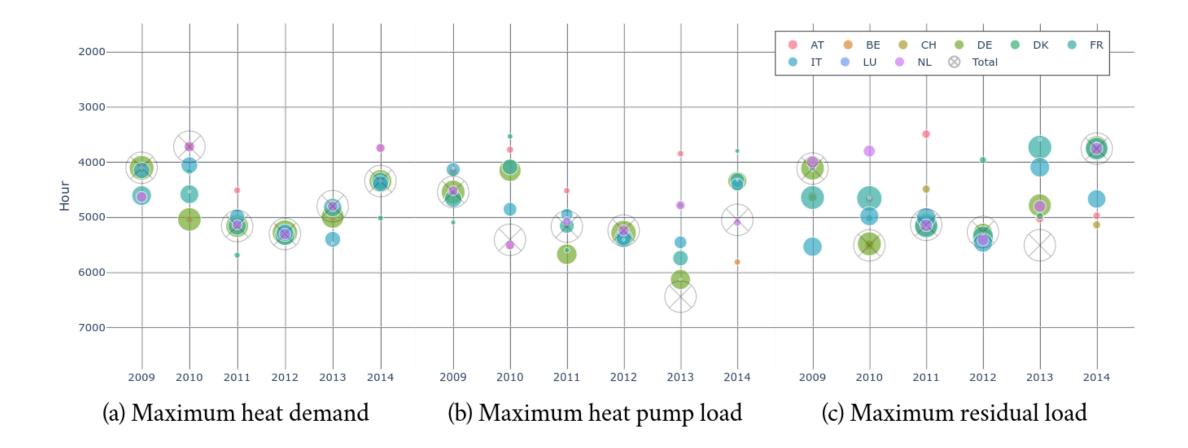
- gas_free: additional firm
 capacites in from of storage
- no_ntc: more long-duration storage in general; few changes compared to base due to HP expansion
- wind_cap: massive PV expansion

Capacities without heat pumps

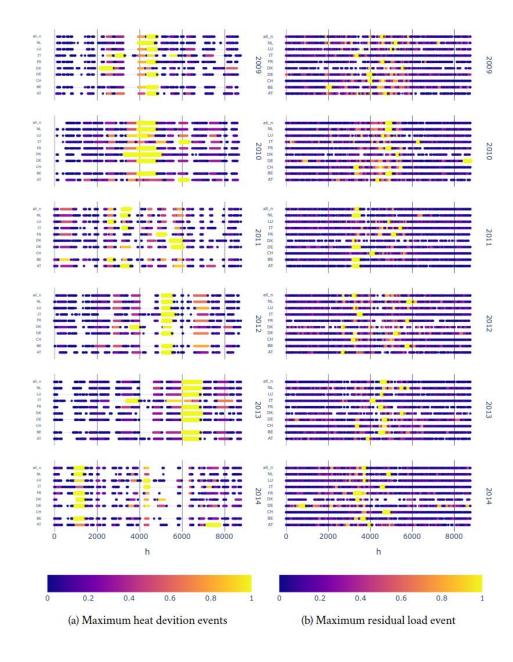
Additional capacities with heat pumps


System costs

- No interconnection more expansive; yet
 little impact of HPs
- Wind cap leads to much higher costs


Heating patterns

Heating facts



Note: In panel (c), yearly heat demand is shown on the left axis. The maximum hourly heat demand, scaled to the overall maximum hourly heat demand of the entire period, is depicted on the right axis.

Maximum heat demand

Heat deviation and residual load

Conclusion

- Heat pump generate energy demand and load peaks that need to be covered
- (Small) thermal heat storage can reduce firm capacity needs substantially
- Interconnection between countries with limited effect \rightarrow overlapping cold spells
- Need for policy? Incentives from "smart" heat pumps & thermal heat storage (?)

Outlook

- Additional weather years & countries
- More realistic differentiation between heat pump technologies
- Endogenous thermal heat storage (vs batteries)

Thank you very much for your attention

aroth@diw.de

Appendix

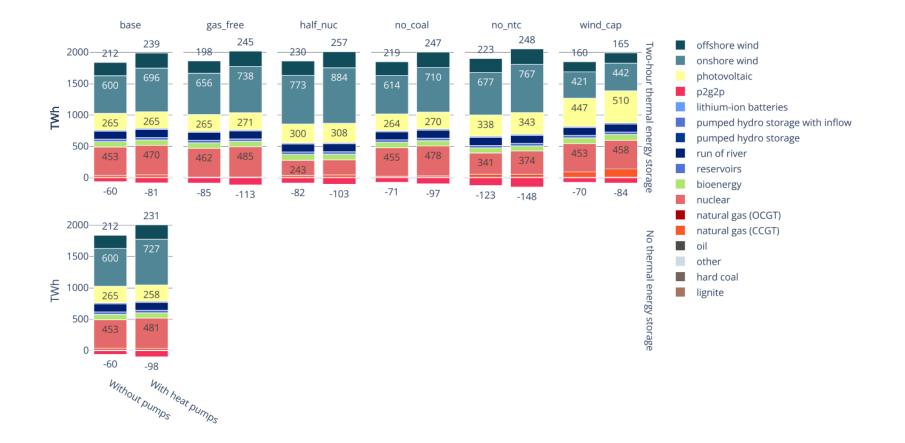
Costs

Table 4: Cost and technology parameters

	Interest rates	Lifetime	Availability		Overnight co	osts	Effi	iciency	Marginal costs		
Technology	[years]	[years]	[years]	energy [1000 EUR]	charging power [1000 EUR]	discharging power [1000 EUR]	charging	discharging	charging [EUR]	discharging [EUR]	
Lithium-ion batteries		20	0.98	300	50	10	0.97	0.97	0.3	0.3	
Power-to-gas-to-power	0.04	23	0.95	0.2	305	850	0.73	0.6	1.2	1.2	
Pumped hydro (open/closed)	0.04	80	0.98	10	550	550	0.97	0.91	0.56	0.56	
Hydro reservoirs		50	0.98	10	200	-	1.00	0.95	0	0.1	

(a) Electricity storage and reservoirs

Technology	Interest rates	Lifetime [years]	Availability	Overnight costs [1000 EUR]	Fixed costs [1000 EUR]	Efficiency	Carbon content [t/MWh]	Fuel costs [EUR/MWh]
Closed-cycle gas turbine		25	0.96	830	28	0.61	0.20	26.0
Bioenergy		25	1.00	900	9	0.45	0.00	10.0
Hard coal		35	0.96	1,300	30	0.43	0.34	10.1
Lignite		35	0.95	1,500	30	0.38	0.40	4.0
Nuclear		40	0.91	6,000	30	0.34	0.00	1.7
Oil	0.04	25	0.90	400	7	0.35	0.27	41.7
Other		30	0.90	1,500	30	0.35	0.35	18.1
Solar photovoltaic		40	1.00	597	10	1.00	0.00	0.0
Wind onshore		50	1.00	3,000	30	0.90	0.00	0.0
Wind offshore		30	1.00	1,795	39	1.00	0.00	0.0
Run-of-river		30	1.00	1,036	13	1.00	0.00	0.0


(b) Electricity generation

Bounds

Technology	Aus	stria	Belgium		Denmark		Fra	nce	Gerr	nany	Ita	ly	Luxembourg		Netherlands		Switzerland	
	low	up	low	up	low	up	low	up	low	up	low	up	low	up	low	up	low	up
Natural gas (CCGT)	4.0	inf	8.1	inf	4.0	inf	7.2	inf	25.4	inf	40.5	inf	0	inf	12.4	inf	0	inf
Oil	0	0.16	0	0.2	0	2.5	0	1.3	0	1.0	0	0	0	0	0	0	0	0
Other	0	0.96	0	1.4	0	1.3	0	5.7	0	8.8	0	6.4	0	0.1	0	4.2	0	0.6
Hard coal	0	0	0	0	1.2	1.2	0	0	12.3	12.3	0	0	0	0	2.7	2.7	0	0
Lignite	0	0	0	0	0	0	0	0	14.6	14.5	0	0	0	0	0	0	0	0
Nuclear	0	0	0	0	0	0	61.8	61.8	0	0	0	0	0	0	0.5	0.5	2.2	2.2
Bioenergy	0.6	0.6	0.9	0.9	6.8	6.8	2.3	2.3	7.2	7.2	4.5	4.5	0.08	0.08	1.9	1.9	0.4	0.4
Run-of-river hydro	6.1	6.1	0.1	0.1	0	0	13.6	13.6	4.7	4.7	6.2	6.2	0.04	38	0.04	0.04	4.2	4.2
Solar PV	5.0	inf	7.5	inf	15.4	inf	18.2	inf	74.5	inf	28.6	inf	0.3	inf	18.7	inf	5.5	inf
Onshore wind	5.5	inf	3.6	inf	16.4	inf	24.1	inf	64.0	inf	15.7	inf	0.3	inf	6.0	inf	0.2	inf
Offshore wind	0	inf	2.3	inf	10.0	inf	2.5	inf	11.1	inf	0.3	inf	0	inf	5.9	inf	0	inf
Lithium-ion batteries																		
power in/out	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf
energy [GWh]	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf
Power-to-gas-to-power																		
power in/out	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf
energy [GWh]	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf	0	inf
Pumped hydro storage (closed)																		
power in	0.3	0.3	1.2	1.2	0	0	2.0	2.0	7.4	7.4	7.4	7.4	1.0	1.0	0	0	1.9	1.9
power out	0.3	0.3	1.2	1.2	0	0	2.0	2.0	7.4	7.4	7.3	7.3	1.3	1.3	0	0	1.9	1.9
energy [GWh]	1.8	1.8	5.3	5.3	0	0	10	10	242	242	70.4	70.4	5.0	5.0	0	0	70	70
Pumped hydro storage (open)																		
power in	5.2	5.2	0	0	0	0	1.9	1.9	1.4	1.4	2.1	2.1	0	0	0	0	2.1	2.1
power out	6.0	6.0	0	0	0	0	1.9	1.9	1.6	1.6	3.3	3.3	0	0	0	0	10.7	10.7
energy [GWh]	1,732	1,732	0	0	0	0	90	90	417	417	309	309	0	0	0	0	8,800	8,800
Reservoirs																		
power out	2.5	2.5	0	0	0	0	8.9	8.9	1.3	1.3	9.6	9.6	0	0	0	0	0	0
energy [TWh]	0.8	0.8	0	0	0	0	10	10	0.2	0.2	5.6	5.6	0	0	0	0	0	0

Table 5: Assumptions on capacity bounds [in GW]

Generation

Residual load duration curves

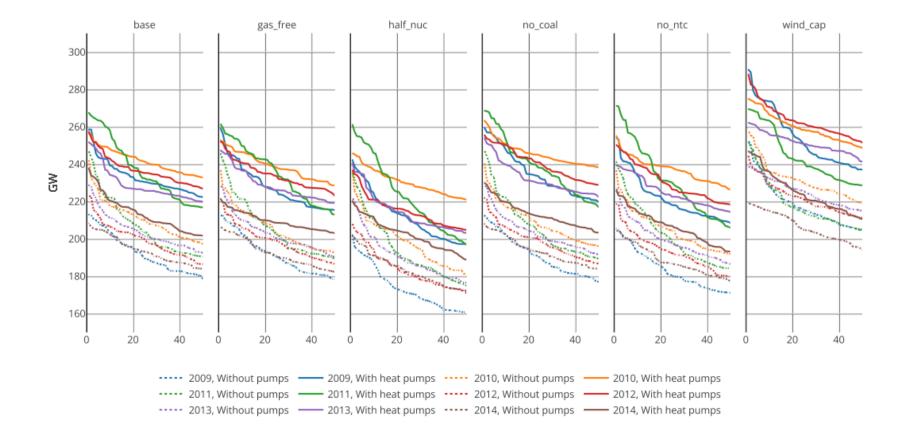


Figure 12: All residual load curves