

Evaluating District Energy Systems – Central vs. Decentral Storages in Dynamic Electricity Pricing

Enerday | 12th April 2024

Introduction

- Ongoing expansion of renewable energies: significance of **flexibility** in the energy system increasing
- Past/Status Quo: supply following demand
- Future: demand increasingly aligning itself with the available supply
- Adjustments can be stimulated by flexible electricity prices and facilitated by additional flexibilities, such as battery and thermal storage

Research Question:

Which is more cost-effective in districts under flexible electricity pricing: centralized or decentralized storage?

Flexible Electricity Price from Grid

Note: The electricity price time series is based on data from the German electricity exchange. The trading prices were scaled so that they correspond to an average of € 0.3216.

Multi-Family Houses: 16 Buildings

Single-Family Houses: 34 Buildings

No. of Apartments: 200

Inhabitants: ~500

Energy System Model: No Storage

Enerday 2024

Energy System Model: Central Storage

Energy System Model: Decentral Storage

Table 1: Cost Data for Storage

	Battery	Thermal Storage
CAPEX (€/kW)	301	300
Efficiency Charge (%)	95	99
Efficiency Discharge (%)	95	99
Self Discharge (%)	0.006	0.25

Table 2: Cost Data for Technologies

	PV	Heatpump Water Water	Heatpump Geothermal
CAPEX (€/kW)	1531.91	1526.16	1526.16
CAPEX (€)	882.35	2163.78	2163.78
OPEX (€/kW)	38.3	38.15	38.15
OPEX (€)	22.06	54.09	54.09

Note: All data was computed and/or simulated within the TransUrban.NRW project.

Figure 2: Floor Heating Demand

No Storage

Central Storage

Decentral Storage

Note: Own calculations.

Table 3: Cost Comparison of the Different Storage Specifications

Cost (€)	No Storage	Central Storage	Decentral Storage
Electricity Expenditure	253,885	230,301	242,041
Electricity from Grid	216,006	163,851	199,864
PV	37,879	66,450	42,177
Heat Expenditure	251,694	168,132	169,673
Central Heatpumps	96,055	67,081	41,700
Decentral Heatpumps	155,639	101,051	127,973
Storage Expenditure	-	30,198	28,662
Battery	-	14,964	11,573
Thermal Storage	-	15,234	17,089

Note: Own calculations.

Conclusion

- Centralized and decentralized storage more cost-efficient than not using any form of storage
- District "Stadtteilpark Hassel": centralized storage dominates over decentralized storage
- Regulation prevents more efficient use
- Under decentralized storage, PV electricity can support the use of thermal storage

Outlook

- Examination of the utilization of centralized and decentralized storages and their influence on grid electricity consumption remains incomplete
- Varying peaks in electricity demand from the grid significantly affect distribution grids and present new opportunities for revenue generation, such as reduced grid charges
- Investigation into the disparities in participation in balancing the electricity market between districts employing centralized versus decentralized electrical storage systems is warranted

Thank you for your attention!

Contacts

Karl Seeger

3 +49 241 80 49876

karl.seeger@eonerc.rwth-aachen.de https://www.eonerc.rwth-aachen.de

E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany

Table 3: Comparison of the Different Storage Specifications

	No Storage	Central Storage	Decentral Storage
Battery (€)	-	14,979	11,573
Thermal Storage (€)	-	27,910	17,089
PV (€)	37,879	66,843	42,178
Autarchy (%)	20.87	40.68	29.28
Self Consumption (%)	66.89	81.70	100

Note: Own calculations.

