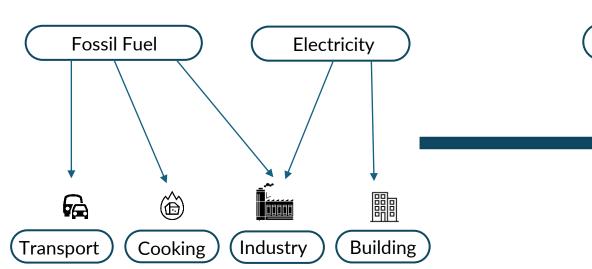
Energy Demand Dynamics Considering High RE Penetration: Managing Uncertainties, Challenges, and Solutions

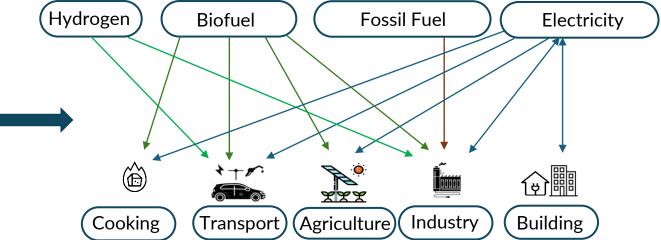
(Enerday 2024-exploring energy demand dynamics)

¹Rohit Bhakar (Speaker), ¹Ajay Kumar Verma, ²Anjali Jain ¹Department of Electrical Engineering, MNIT Jaipur, Rajasthan, India ²Vasudha Foundation, New Delhi, India



Agenda

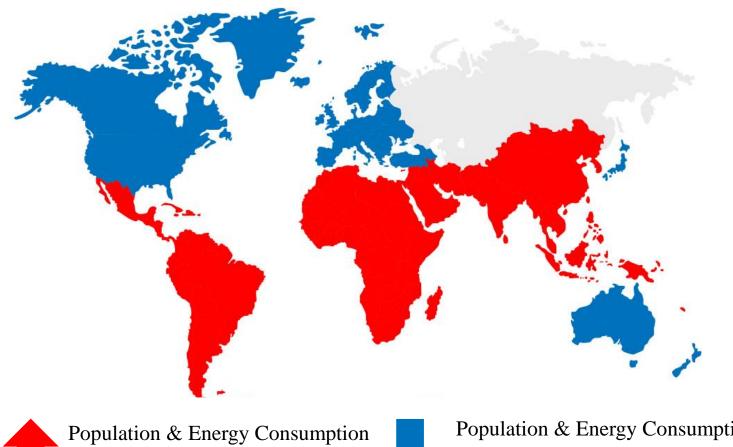
- Introduction
- Transition in Demand Dynamics
- Drivers of Demand Dynamics
- Challenges
- Solutions
- Case Study: Hybrid Plant: Addressing Supply-Demand Balance
- Conclusion



Generation and Demand Dynamics

Traditional System

Towards Net-Zero System


Conventional system

- Fossil fuel-based
- Finite resources
- Non-commercial energy used

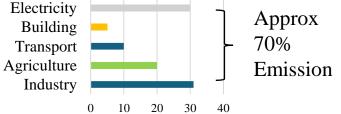
- □ Major challenge of Non-Conventional system
- Deployment of RE
- Selection of appropriate resources
- Technological conversion

Transition in Demand Dynamics

- Growing economy faster (PGDC)
- Shift towards the urbanization
- Increasing the cooling and heating demand
- World's energy mix changes significantly

Population & Energy Consumption Per capita rising Population & Energy Consumption Per Capita Static or Falling

*PGDC: Power generation in developing countries https://www.energymix.co.nz/our-consumption/increasing-demand/#growing-economies-increase-demand


India's Energy Dynamics

500000 RE Coal 450000 Hydro 12% 51% 400000 2% 350000 300000 Nuclear 250000 2% 200000 Oil 150000 26% 100000 50000 Natural *In percentage 2012-13 2013-14 2014-15 2017-18 2018-19 2019-20 2020-21 Gas Industrial (High Voltage) Public Lighting Traction 7% Agriculture Public Water Works & Sewage Pumping Miscellaneous

Electrical Energy Sales to ultimate Consumers In GWh

Fig. :1 Electrical energy sales to ultimate consumers

Fig. 2: India's total primary energy supply

20 30 40

Fig. 3: CO₂ emission from different sectors of India

- RPO trajectory for each state (43.3% by 2030)
 - 45% reduction in emission intensity by 2030 compared to 2005
 - 50 % of non-fossil-based installed capacity of power by 2030

Net Zero by 2070

https://www.mnit.ac.in/

Source: https://cea.nic.in/dashboard/?lang=en https://vasudhapower.in/generation https://pib.gov.in/FeaturesDeatils.aspx?NoteId=151141&ModuleId%20=%202

•

Electricity Demand Pattern

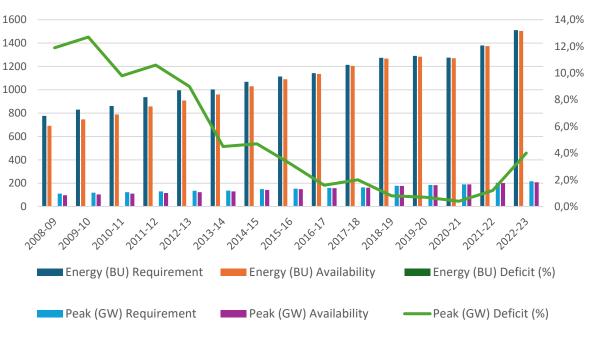
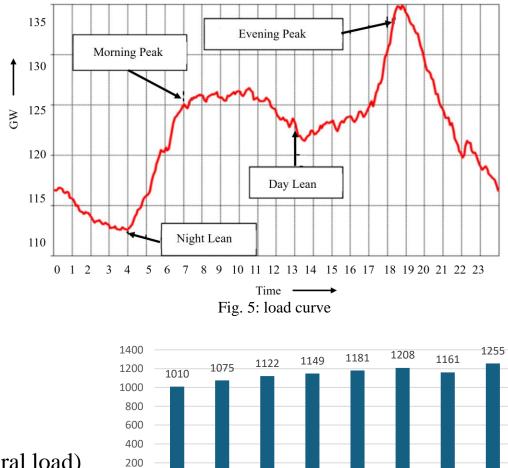



Fig. 4: Power Supply Position in India, 2008-09 to 2022-23

- Shift in the peaks due to cooling load
- Changing the Day lean and Night lean due (by shifting agricultural load)
- Per capita consumption significantly rises

0

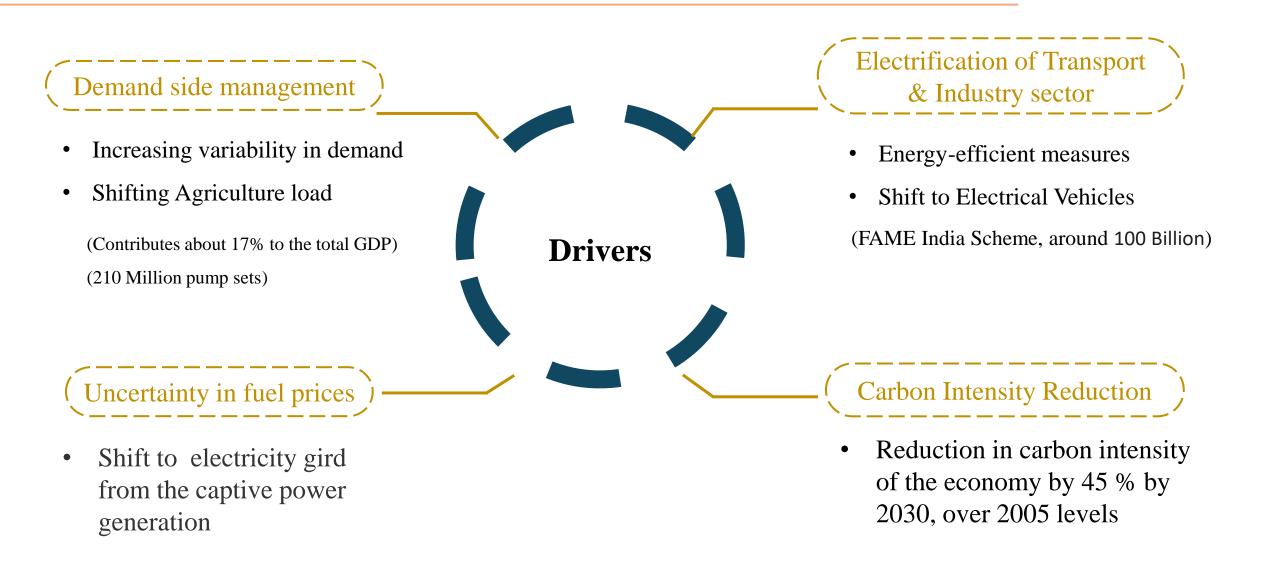

2014-15 2015-16 2016-17 2017-18 2018-19 2019-20 2020-21 2021-22

Fig. 6: Per Capita Consumption (kWh) Per Capita Consumption

https://cea.nic.in/dashboard/?lang=en https://www.iitk.ac.in/npsc/Papers/NPSC2016/1570293957.pdf

Drivers of Increasing Demand Dynamics

https://beeindia.gov.in/en/programmes/demand-side-management-programme-dsm https://heavyindustries.gov.in/fameii#:~:text=Government% 20has% 20approved% 20Phase% 2DII,for% 20xEVs% 20in% 20the% 20country.

Challenges Associated with High RE Integration

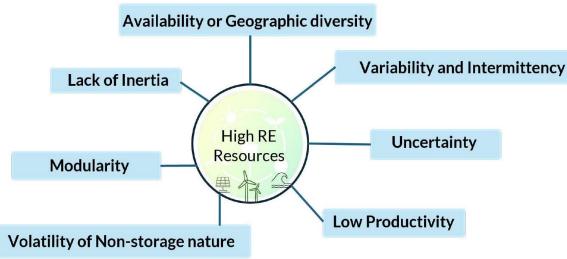


Fig. 7: Challenges of High RE Resources

- Economically managing supply-demand equilibrium:
 ✓ Non-linear escalation of costs as RE penetration intensifies.
- Technical requisites for grid reliability with RE resources:
 - ✓ Innovative technological solutions tailored to the specific mix of RE technologies employed

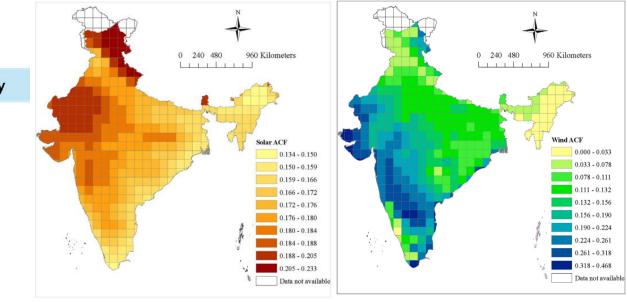
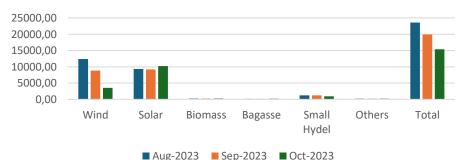
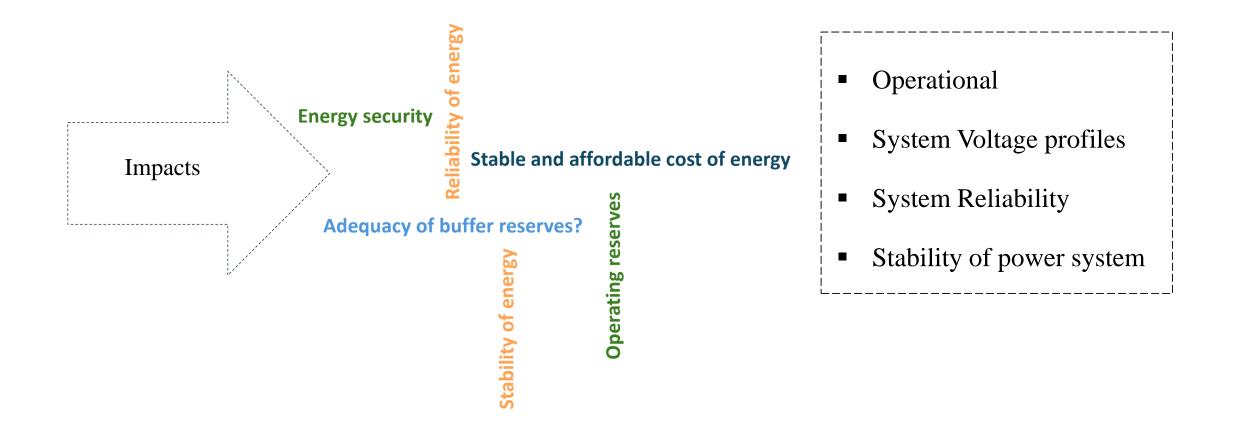



Fig. 8: Annual capacity factor for solar PV plants and on-shore wind plants

All India Renewable Generation



https://www.mnit.ac.in/

https://cea.nic.in/dashboard/?lang=en

Jain, A., Das, P., Yamujala, S., Bhakar, R., & Mathur, J. (2020). Resource potential and variability assessment of solar and wind energy in India. *Energy*, *211*, 118993.

Impact of High RE on Demand Dynamics

Energy Supply-Demand Balance Coordination

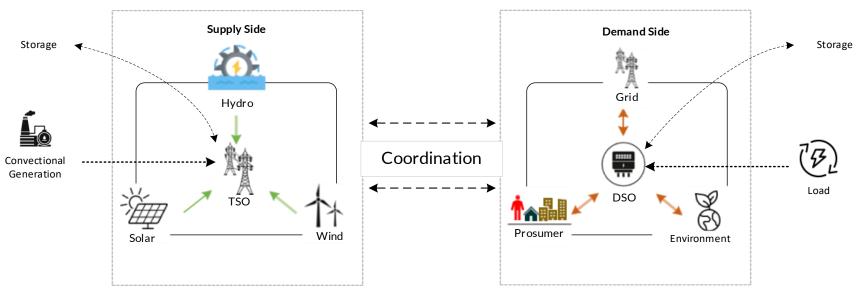
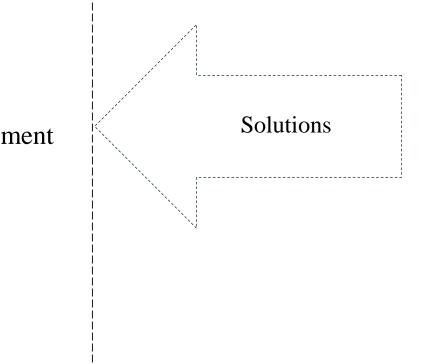


Fig. 9: Framework of the supply and demand considering High RE

- Large-scale electricity storage
 - Pump hydro, grid-scale battery energy storage
- Gas and Hydrogen thermal generation
 - Dispatchable combined cycle gas or hydrogen turbine produce electricity as needed
- Interconnection
 - Import and export

- Transport Demand Side Response (DSR)
 - Smart charging and vehicle-to-Grid
- Residential DSR
 - Smart home energy management, Domestic battery storage Heat pumps with thermal storage
- Industrial & Commercial DSR
 - Behind the meter generation and storage, Commercial heat pump flexibility
- Electrolysis
 - Hydrogen to electricity



Power

Solutions of High RE Integration Considering Demand Dynamics

Demand-Supply Balance with High RE Integration

- Flexible coal-fired plant
 - ✓ Fast dispatch
 - ✓ Accurate RE forecasting
 - ✓ Modified reserve management
- Energy storage system
- Green hydrogen
- Hybrid plants

POWER

Flexible coal-fired plants

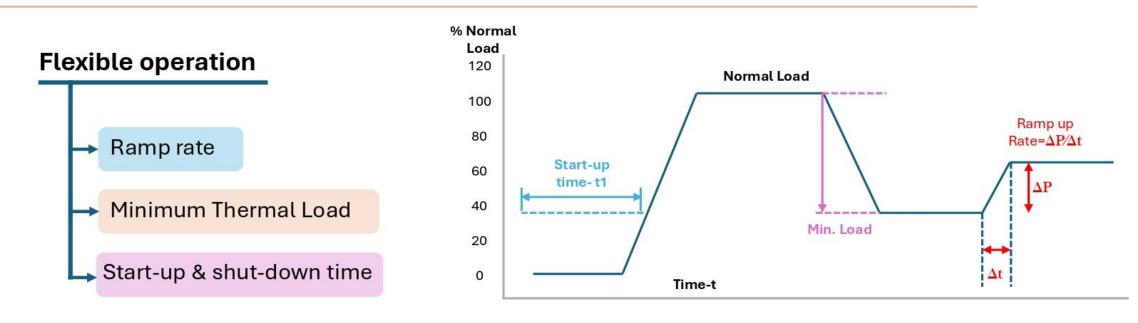


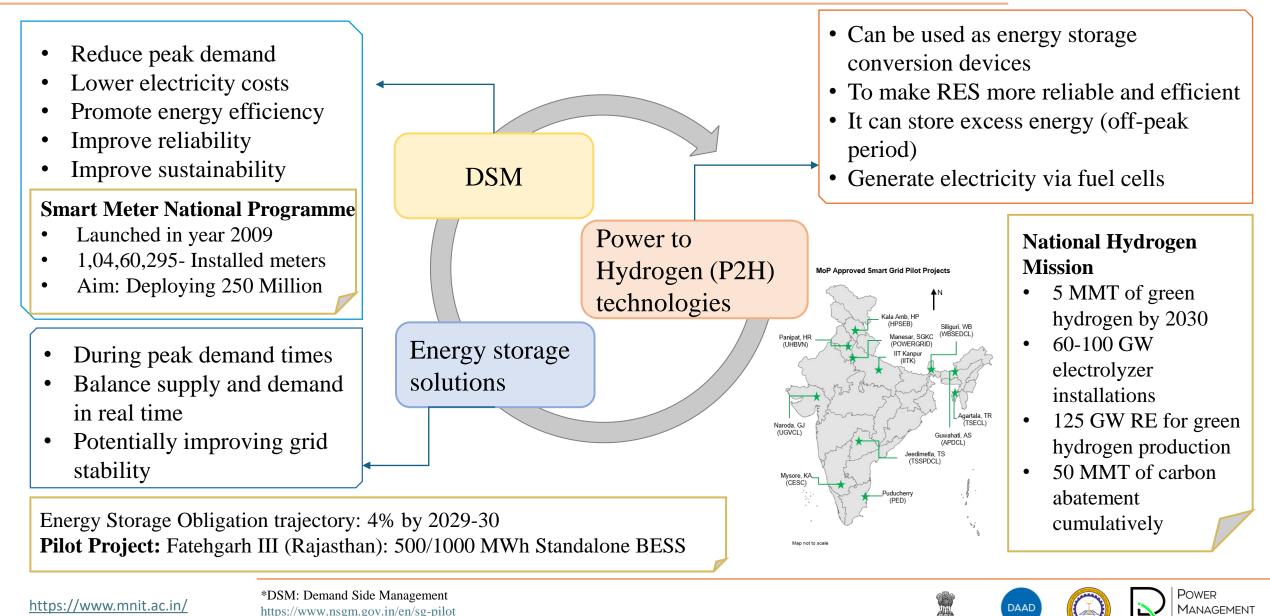
Fig. 10: Attributes of Flexible operation

- Flexible operation of the coal-fired plants provides a stable, secure, and reliable power supply
- To implement flexibility, it is necessary to identify thermal units that are both economically and technically viable to maintain the demand and supply balance

Indian Prospective

- Observed that the average day-wise flexibility: 8-10% in 2009 to15-18% in 2019.
- Average daily thermal generation range:15-17 GW.
- Maximum flexibility required: 56GW (During winter)

Power Management Research


https://www.mnit.ac.in/

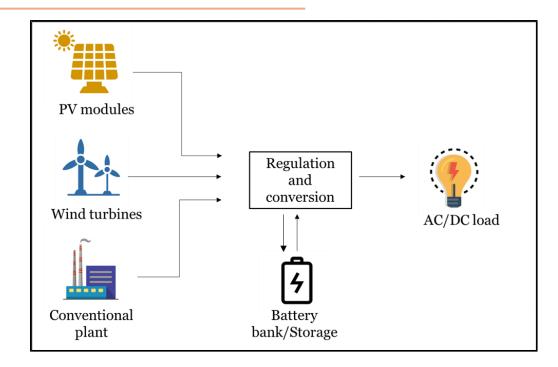
https://cea.nic.in/old/reports/others/thermal/trm/flexible_operation.pdf

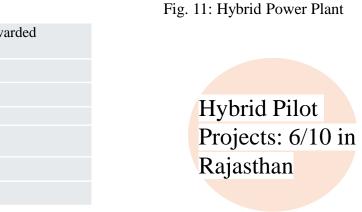
https://posoco.in/wp-content/uploads/2020/05/Flexibility-Analysis-of-Thermal-Generation-for-RE-Integration-in-India-1.pdf

Energy Storage Solutions, P2H and Demand Side Management

https://mnre.gov.in/national-green-hydrogen-mission/

Hybrid Power Plants


- The hybrid system is the combination of two or more than two RES that work in grid-connected mode or standalone mode
- Hybrid projects aggregate capacity in India: 4360 MW


National Wind-Solar Hybrid Policy-2018

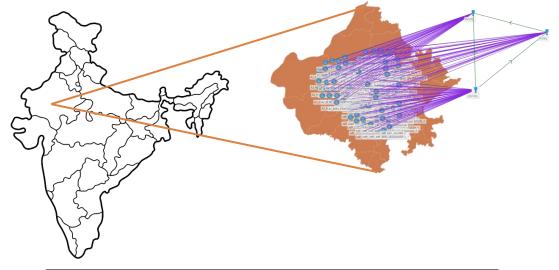
- Scheme for setting up of 2500 MW Inter State Transmission System (ISTS) connected wind solar hybrid projects
- Provide a framework for large grid connected wind-solar photovoltaic (PV) hybrid system

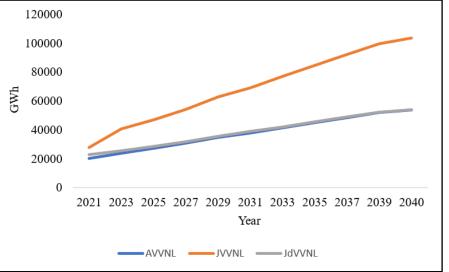
Under-construction Hybrid Power Projects

	• •	
S.No.	Scheme	Total Capacity Awarded (MW)
1	1200 MW ISTS-Connected Wind- Solar Hybrid Power Projects (Tranche-I)	840
2	1200 MW ISTS-Connected Wind- Solar Hybrid Power Projects (Tranche-III)	1110
3	400MW ISTS-connected Round-the-clock (RTC) RE Power (RTC-1)	400
4	1200 MW ISTS-Connected RE Projects with assured Peak Power Supply in India (ISTS-VII)	1200
5	1200MW ISTS-connected Wind Power Projects (Tranche-IV)	1050
	Total	4600

of Science and Technolog

Case Study: "Hybrid Plant: Addressing Supply-Demand Balance"


Geographical coverage — Rajasthan State (India)


- Largest state covering 10.4% total geographical area of India
- Total install RES capacity: 23.8 GW
- Solar potential:142 GW
- Maximum Solar Radiation Intensity: 6-7KWh/Sq. m/day (more than 325 days in a year)
- Wind Potential: 1,27,750 MW
- Hybrid capacity commissioned:1,690 MW

Specific Parameters and assumption

Sectoral coverage	Powe
Time horizon	Long
Spatial resolution	AVV
Analytical approach	Botto

ver sector g term: 22 year VNL, JVVNL, JdVVNL tom-up

https://www.mnit.ac.in/

https://finance.rajasthan.gov.in/docs/budget/statebudget/2023-2024/economicreviewE.pdf

[14]

Case Study: "Hybrid Plant: Addressing Supply-Demand Balance"

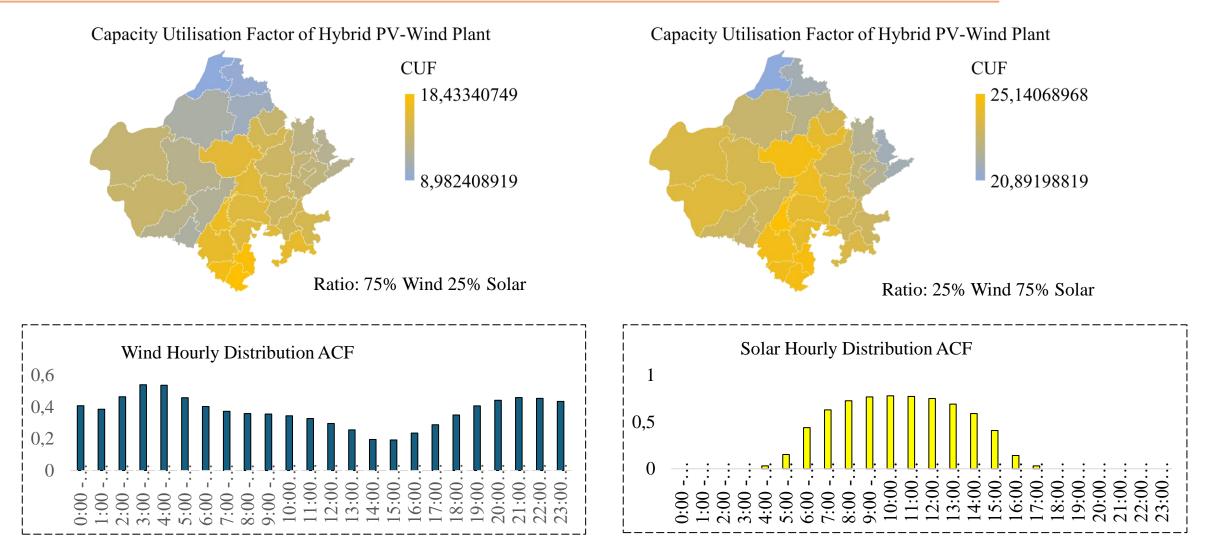


Fig. 12: Capacity Utilisation Factor of Hybrid PV-Wind Plant

Case Study: "Hybrid Plant: Addressing Supply-Demand Balance"

	No Hybridisation	Hybridisation	
Technologies	Reference Case	Case 1	Case 2
Storage (GW)	124	116	52
Solar genration share	54.60%	46.15%	41.44%
Wind genration share	4.40%	3.57%	3.59%
Hybrid generaton Share	-	9.02%	19.62%
Coal share	29.40%	35%	26.30%

Table : Comparison of storage demand in different scenarios

Benefits

- Smoothen out variability of output generation
- Reduce the cost of transmission infrastructure
- Reduce the land requirement

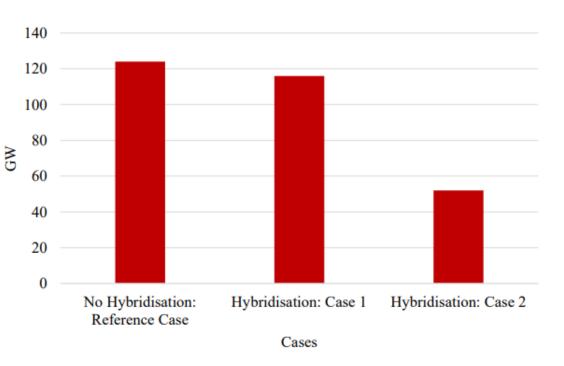


Fig. 13: Storage Requirement

Conclusion

- Support utilities to predict and manage peak demand periods accurately
- Optimizes cost of expansion projects by optimizing existing infrastructure
- Helps utilities identify efficient & cost-effective locations for energy storage systems
- Potential capacity shortage
- Transmission infrastructure upgradation areas
- This study highlights possible solutions implemented globally that effectively address these challenges, including supply-demand balancing considerations in India's highly RE-integrated systems.

THANK YOU

Power Management Research

Dr. Rohit Bhakar E-mail: rbhakar.ee@mnit.ac.in Webspace: <u>https://mnit.ac.in/dept_ee/profile?fid=RK2L</u> Webspace: <u>https://www.pmresearch.in/</u>

A MARATE

			f under construction Hybrid Renewable	Energy Projects	(SECI)		
.No.	Name of the project	Name of the	project location	Project	Project	Under	Date of completion
		Developer	(Village/District/State)	Capacity Awarded (MW)	Capacity Commissioned (MW)	Construction Capacity (MW)	Scheduled
L	1200 MW ISTS-Connected Wind- Solar Hybrid Power Projects (Tranche-I)	SBE Renewables Ten Private Limited	Jaisalmer,Barmer,Rajasthan	450	0	450	29.09.2022 or actual date of LTA, whichever is later
2	1200MW ISTS-connected Wind Power Projects (Tranche-III)	•.	Neemba village, fatehgarh, Jaisalmer Rajasthan	130	0	130	Actual date of LTA operationalization
3	1200MW ISTS-connected Wind Power Projects (Tranche-III)	Adani Hybrid Energy Jaisalmer Five Limited	Jaisalmer, Rajasthan	600	0	600	44980
4	1200MW ISTS-connected Wind Power Projects (Tranche-III)	Renewable Energy	Nuthimadugu, Anantapur Dt. A.P and Chodiya Village, Jaisalmer, Rajasthan	380	0	380	Actual date of LTA operationalization
5	400MW ISTS-connected Round-the-clock (RTC) RE Power (RTC-1)	Private Limited	400MW Rajasthan+300MW Maharashtra+300MW Koppal Karnataka+300MW Gadag,Karnataka	400	0	400	45144
5	1200 MW ISTS-Connected RE Projects with assured Peak Power Supply in India (ISTS-VII	Greenko AP01 IREP Private Limited	Kurnool, Andhra Pradesh	900	0	900	02.08.2023 (690 MW); 27.11.2023 (210 MW)
7	1200 MW ISTS-Connected RE	Renew Surya Ojas Private Limited	Karnataka	300	0	300	45351
8	1200MW ISTS-connected Wind Power Projects (Tranche-IV)	M/s NTPC Renewable Energy Limited	Dayapar, Kutch, Gujarat	450	0	450	45290
)	1200MW ISTS-connected Wind Power Projects (Tranche-IV)	Project Ten Renewables Power Pvt limited	Pavagada, Karnataka	450	0	450	45290
10	1200MW ISTS-connected Wind Power Projects (Tranche-IV)	Kotuma Wind Parks Pvt Ltd	Karnataka, Rajasthan	150	0	150	45290

Power

RESEARCH

MANAGEMENT