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Introduction
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Energy crises require energy saving efforts
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Winter is coming: All you need to know about
commodtis the EU's 15% gas reduction plan

World is in its 'first truly global energy
crisis' - IEA's Birol

g;if;'y N U.S. Power Crisis Leaves Millions
Science Cold, Dark as Blackouts Expand

= Blackouts are hitting states from North Dakota to Oklahoma
= Texas shortages continue with millions cut off amid freeze

Ehe New York Times
‘Less water means more gas’: how
Biting Cold Sweeping U.S. Hits the drought will test California’s stressed
South With an Unfamiliar Freeze power grid

In Texas, where a 2021 storm killed 246 people and knocked out

electricity for millions, officials urged residents to conserve power. California's diminishing water supply is cutting down

hydropower, causing the state to rely more on fossil fuels
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Retail prices unlikely to reflect societal costs
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European Energy Crises 2022/23 (Ruhnau et al., 2022)
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Energy saving reward programs could provide an alternative financial
incentive.

What is an energy saving reward?
@ payment by a utility (government)
to the customer

@ conditional upon achieving a
reduction in energy consumption
over a specified period

How does the analyzed program
work?

@ 100 EUR conditional on

@ saving 10% in the 2022/23 heating
season compared to consumption
in the previous heating season

@ Self-reporting of meter reading at
beginning and end of program
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We study the causal effect of the reward on the natural gas consumption.

Research questions

@ Is the program effectively reducing gas consumption of participating
customers during the crises (target of inference: ATT)? yes, by 5%

@ Which customers are attracted to saving reward programs? those with the
highest elasticity/financially motivated customers

@ Which customer segment saves most? wip

@ What is the mechanism behind the causal effect, financial incentive or
information treatment? wip

@ Could the program have been improved? wip



Data
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We have access to the universe of residential gas consumer data

Utility owned data Additionally
@ 170,000 residential natural gas o census data (100x100m)
customers from a large German L
utility @ degree of urbanization
e Treatment group: 10,000 @ socio-economic data

voluntary participants
e Control group: 160,000

@ rich set of customer information
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We use meter readings unrelated to the reward to determine the control
group's consumption.

@ lrregular meter readings challenging

@ Often present in the utility sector (e.g. heating, water, gas, electricity)
@ Need for an innovative solution
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Figure 1: Number of meter readings, divided between App users (above) and non-app
users(below)
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We select customers with unrelated readings during a comparable time
period.

Criteria for "comparability”

@ Tolerance: Customer's meter must not be taken more than X days before
or after the end of the period.

@ Coverage: The entire metering period must cover at least Y percent of the
heating days.

Heating day

Date of meter reading
va | | ¥ |
v | | |

«— «—r ———»
Tolerance Beginning phase Ending phase Tolerance

Program period

>
Time
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We get a control group of over 20k customers for which we construct the
outcome variable y;

Gas meter reading ® First ® Second
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Selection bias is a threat to identification

Ease of
compliance

Figure 2: The core identification challenge
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Selection bias is a threat to identification

Location

Figure 3: The Causal Effect of the Program on Consumption represented by a DAG

Source:Own illustration created via causalfusion.net (see Bareinboim and Pearl, 2016).


https://www.causalfusion.net/login
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We overcome selection bias by conditioning/matching on proxy variables for
confounders.

Empirical strategy

. . . > G
@ Outcome variable: gas consumption per heating degree day y; = ng
t
@ Regression equation
Vi :BIL[Reward,-]—|—aB,-+M,-~’y+L,--6+S,--p+e,-, (1)
o Matching
Table 1: Variables and proxies
Variable Proxies/Units

Yi Individual Gas Consumption  Cubic meters per heating day

1[Reward;]  Program Participation full participants (1) vs. non-participants (0)

Bi Basic Heating Need Annual consumption forecast in 1,000 kWh

i) App use for meter readings
i) Newsletter receipt

M; Motivation iii) Contract via comparison portal
iv) Competitive customer segment
v) Marginal price paid in ct/kWh

i) Part of utility’s default supply area

L; L i it -
ocation ii) County x degree of urbanization

S; Socio-economic Status Zipcode-specific shares of social status classes

€ Error Term Captures unobserved differences
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The program reduced consumption by an additional 5.4% compared to the
ol group

The Effect of the Program on Consumption

Unadjusted sample Matched samples
U-0 U-1 U-2 M-1 M-2
1[Reward] COB9FKK  _(.40FKK  _(.40%FK  _(.35%KF  _(.32%%k
(0.04) (0.02) (0.02) (0.04) (0.04)
Matched sample [1] [2]
Control sets as defined in - Basic heating need (B;) v v v v
- Motivation (M;) v v v v
- Location (L) v v v v
- Socio-economics (S;) v v
Effect estimate (in %) -9.5 -6.6 -6.6 -5.9 -5.4
N 28847 28847 28 847 12312 12314
R? 0.01 0.75 0.75 0.77 0.77
R? within 0.73 0.73 0.75 0.75

Notes: (i) ***, **, * and . represent 0.1%, 1%, 5%, and 10% significance levels, respectively; (ii)
robust standard errors in parentheses; (iii) the dependent variable is the gas consumption measured in

m3 per heating day.
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The results hold against a wide range of robustness checks

@ Control group selection: tolerance and coverage
@ Pseudo-treatments

© War motivation and age controls

© Other matching algorithms

@ Not-including control variables after matching

@ Inclusion of temperature controls



Conclusion

Conclusion and Outlook

Energy saving rewards are an
effective, additional tool to manage
energy crises by reinforcing saving
behavior:

@ Attractive for a small fraction of
customers, mostly already
motivated segments

@ ATT: reduction of gas
consumption by 5.4% compared to
control group

But getting the magnitude of the
premium right requires more research

@ Role of uncertainty

@ Improve treatment assignment
given heterogeneity

@ Understand mechanism better
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Outlook

Double Machine Learning (DML) Mechanism analysis (Pearl, 2000)
@ Analysing heterogeneity between
individuals - "
@ Better targeting of intervention @ -

(Chernozhukov et al., 2018; Knaus,
2022; Bach et al., 2023)
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Feedback

Thanks for listening!

Comments? Questions? Suggestions?
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Outcome variable

Figure 4: The Construction of the Outcome Variable:
Potential Control Households (3D-animation)
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Pseudo-Treatments

Table 2: The Effect of the Program on Consumption:
Pseudo-treatment Estimates

Unadjusted sample Matched samples
U-0 U-1 U-2 M-1 M-2
1[Reward] 0.063 0.003 0.003 0.019 0.001
(0.058)  (0.032) (0.032) (0.047)  (0.041)
Matched sample [1] [2]
Control sets as defined in equation (2):
- Basic heating need (B;) v v v v
- Motivation (M;) v v v v
- Location (L;) v v v v
- Socio-economics (S;) v v
Effect estimate (in %) 1.01 0.04 0.05 0.30 0.01
N 19438 19438 19438 13756 13827
R? 0.00 0.73 0.73 0.72 0.72
R? within 0.71 0.71 0.69 0.69

Notes: (i) ***, ** *, and . represent 0.1%, 1%, 5%, and 10% significance levels, re-
spectively; (ii) robust standard errors in parentheses; (iii) the dependent variable is the gas
consumption measured in m3 per heating day.
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Outcome model

Table 3: The Effect of the Program on Consumption:
Estimates from Different Outcome Models

Fewer controls

1 2 3 4 5

1[Reward] —0.32%F% .31k _Q.31%FF _(.32%KF (. 28%%*

(0.04) (0.04) (0.04) (0.04) (0.07)
Matched sample [2] [2] 2] [2] [2]
Control sets as defined in equation (2):
- Basic heating need (B;) v v v v
- Motivation (M;) v v v
- Location (L;) v v
- Socio-economics (S;) v
Effect estimate (in %) -5.4 -5.3 -5.3 -5.4 -4.9
N 12314 12314 12314 12314 12314
R? 0.77 0.75 0.75 0.75 0.00
R? within 0.75

Notes: (i) ***, ** *, and . represent 0.1%, 1%, 5%, and 10% significance levels, re-
spectively; (ii) robust standard errors in parentheses; (iii) the dependent variable is the gas
consumption measured in m3 per heating day.
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Dependent variable

Figure 5: The Effect of the Program on Consumption: Outcome Variable
(3D-animation)
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Table 4: The Effect of the Program on Consumption:
Main Estimates (Reduced Sample)

Unadjusted sample Matched samples
U-0 U-1 U-2 M-1 M-2
1[Reward] —0.65%**%  —0.36*%**  —0.36***  —0.32%¥**  _(.27***
(0.05) (0.03) (0.03) (0.04) (0.04)
Matched sample [y [21"
Control sets as defined in equation (2):
- Basic heating need (B;) v v v v
- Motivation’ (M'}) v v v v
- Location (L;) v v v '
- Socio-economics’ (S';) v v
Effect estimate (in %) -10.1 -5.9 -5.9 -5.4 -4.6
N 20736 20736 20736 8252 8258
R? 0.01 0.77 0.77 0.80 0.81
R? within 0.75 0.75 0.78 0.79

Notes: (i) ***, **, * and . represent 0.1%, 1%, 5%, and 10% significance levels, respectively; (ii)
robust standard errors in parentheses; (iii) the dependent variable is the gas consumption measured in m
per heating day; (iv) ' indicates that M’; and S’; (and thus also our first and second matched sample)
are slightly adapted by including additional covariates with a non-negligible number of missings.
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Table 5: The Effect of the Program on Consumption:

Estimates with Temperature Controls

Temperature controls

1 2 3 4 5

1[Reward] —0.32%%*%  _(.36%**  —0.31%KF  _0.27F** —0.31%**

(0.04) (0.04) (0.04) (0.04) (0.04)
Matched sample [2] [2] [2] [2] [2]
Control sets as defined in equation (2):
- Basic heating need (B;) v v v v v
- Motivation (M;) v v v v v
- Location (L;) v v v v v
- Socio-economics (S;) v v v v v
Type of further temperature controls To HD75 HDD; 5 DDNyg /15
Effect estimate (in %) -5.4 -6.1 -5.2 -4.7 -5.2
N 12314 12314 12314 12314 12314
R? 0.77 0.78 0.77 0.77 0.77
R? within 0.75 0.75 0.75 0.75 0.75

Notes: (i) ***,** * and . represent 0.1%, 1%, 5%, and 10% significance levels, respectively; (ii)
robust standard errors in parentheses; (iii) the dependent variable is the gas consumption measured

in m3 per heating day; (iv)
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Different comparison groups

Table 6: The Effect of the Program on Consumption:
Further Matching Estimates

Further matched samples

M-2 M-3 M-4 M-5
1[Reward] —0.32%F%  _(Q.31%KF  _(.32%kF  _(.32%k*
(0.04) (0.03) (0.03) (0.03)
Matched sample [2] [3] [4] [5]
Matching attributes:
- NN! matching ratio 11 2:1 3:1 5:1
- With replacement v v v v
Control sets:
- Motivation ' v v v
- Location ' v v v
- Basic heating need v v ' v
- Socio-economics v v v v
Effect estimate (in %) -5.4 -5.3 -5.4 -5.5
N 12314 15034 16993 19651
R? 0.77 0.76 0.76 0.76
R2 within 0.75 0.74 0.73 0.73

Notes: (i) ***, ** * and . represent 0.1%, 1%, 5%, and 10% signifi-
cance levels, respectively; (ii) robust standard errors in parentheses; (iii) the
dependent variable is the gas consumption measured in m3 per heating day;
(iv) the distance measure used to match within exact matching strata is the
Mabhalanobis distance.
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Sample Sizes

Figure 6: Sample Sizes (Matched Households):
Further Matching Variants

Households [] Al [] Unmatched [ Matched [C] Matched (ESS)

2] Matched sample: [3] Matched sample: [4] Matched sample: [5] Matched sample:
B+ M+L+S (1:1 NN) B+M+L+S (2:1NN) B+M+L+S (3:1NN) B+M+L+S (5:1 NN)
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Readings over time
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Figure 7: Number of meter readings, divided between App users (above) and non-app
users(below)



Appendix
O00000000e000

Descriptive Statistics

Table 7: Descriptive Statistics: Main Variables

Means Mean diff.
Variable name Treated Control Raw  Std
(A) Contract and customer details (in-house)
Motivation
App usage (before) (Y/N) 050 007 043
Competitive customer segment (Y/N) 0.80 068 0.11
Newsletter received (Y/N) 023 013 0.10
Comparison portal (Y/N) 053 044 0.09
Marginal price (ct/kWh) 839 859 0.1
Location
Default supply area (Y/N) 0.42 050 -0.08
Basic heating need
Predicted demand (1k kWh/p.a.) 1786  18.36 -0.05
Others
Fixed price (€/year) 14051 135.10 014
Customer age (years) 5300  54.48 -0.10
(B) Soc.-eco. variables (Acxiom)
Social status class: Very low (%) 0.05 0.04 0.00
Social status class: Low (%) 0.06 0.05 0.03
Social status class: Rather low (%) 0.09 0.08 0.04
Social status class: Intermediate (%) 013 012 0.06
Social status class: Rather high (%) 020 022 -0.09
Social status class: High (%) 0.23 0.25 -0.07
Social status class: Very high (%) 025 024 004
(C) Soc.-dem. variables (German Census 2011)
Age of inhabitants (avg. year) 243 272 -0.03
Family size (avg. #) 272 2.69 0.07
Household size (avg. #) 227 2.19 0.13
Age of buildings (avg. year) 58.76 6357 -0.20
Flats per building (avg. #) 2.49 2.96 -0.21
Living space per flat (avg. m?) 100.95 95.15 0.20
Rooms per flat (avg. #) 481 458 0.21

Notes: We use the standard deviation of the covariate in the group of
participants as the standardization factor to ensure comparability across
continuous covariates. Acxiom’s (2020) social status classes are measured
in percent per zipcode. The socio-demographic variables from the German
Census 2011 (DESTATIS, 2020) are all reported as average statistics per
100x100m grid cell.
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We overcome selection bias by conditioning/matching on proxy variables for
confounders.

Regression equation
Vi :ﬂ]l[Reward,-]+o¢B;+M;-’y+L;-6+S;-p+e;, (2)

Variables and proxies

Variable Proxies/Units
Vi Individual Gas Consumption  Cubic meters per heating day
1[Reward;] Program Participation full participants (1) vs. non-participants (0)
B, Basic Heating Need Annual consumption forecast in 1,000 kWh

i) App use for meter readings
ii) Newsletter receipt

M; Motivation iii) Contract via comparison portal
iv) Competitive customer segment
v) Marginal price paid in ct/kWh

i) Part of utility’s default supply area

Li Location i) County x degree of urbanization

S; Socio-economic Status Zipcode-specific shares of social status classes

€ Error Term Captures unobserved differences
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Control group selection via matching

Why match?
y Figure 8: Covariate Balance:
@ achieve unconfoundeness LOVE Plots on Main Variables

@ guarantee common support

@ account
for non-linear relationships

How?
@ First matched control group:
o Exact matching on motivation
proxies and location
o 1:1 NN
within exact matching strata
using Mahalanobis distance
for basic heating need
@ Second matched control group
o additionally:
1:1 NN Mahalanobis
distance matching
on socio-economic classes
within exact matching strata.




Effective Sample Size
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We find matching partners for 82% of participants.
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Figure 9: Sample Sizes (Matched Households):
Main Matching Variants
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