GEFÖRDERT VOM

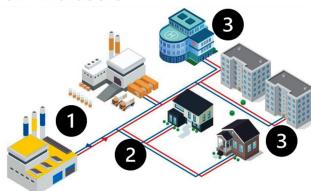






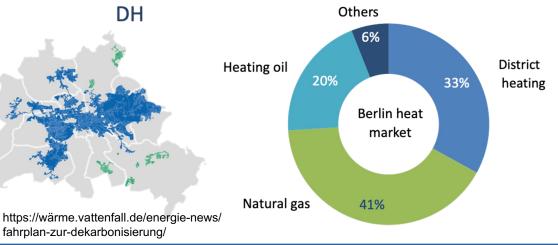
MATH<sup>+</sup>

# A case study on long-term investment planning for the decarbonization of Western Europe's most complex district heating network


Stephanie Riedmüller, Fabian Rivetta, Maxwell Dykes, Janina Zittel

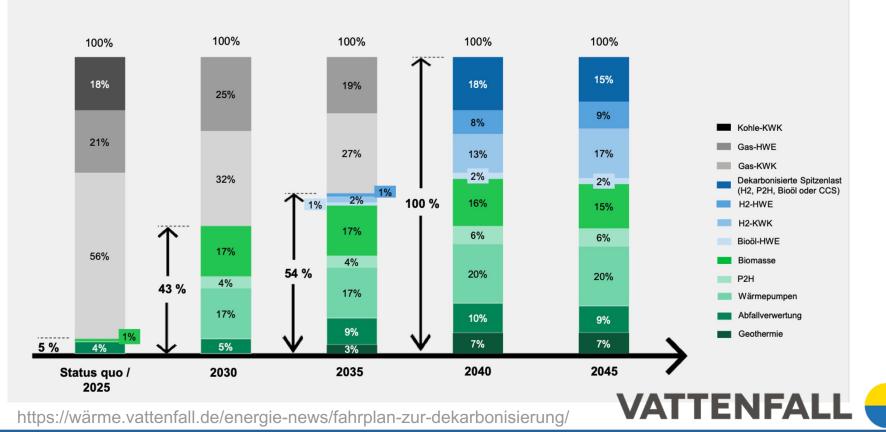
Zuse Institute Berlin




**District heating networks (DHNs)** distribute heat from an energy source or sources to residential and commercial users

- A DHN consists of:
- 1. Energy source (or sources)
- 2. Distribution network
- 3. End users

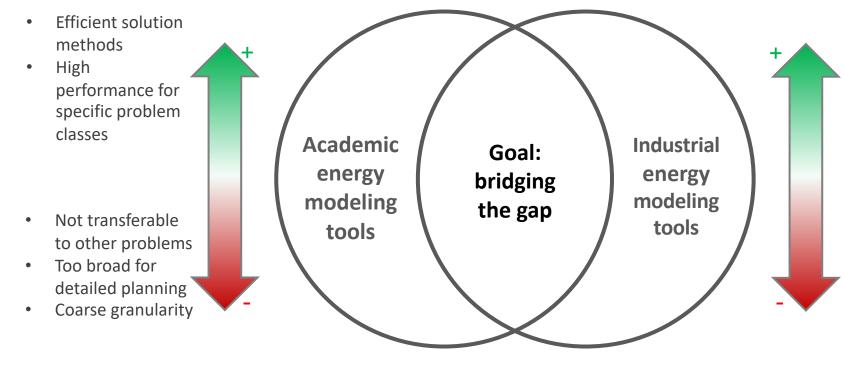



Baerbel Epp, *Support for Renewable District Heating in Slovenia*, Solarthermalworld.org, 12.06.2019, https://www.solarthermalworld.org/news/supportrenewable-district-heating-slovenia

- Decarbonizing heat sources in DHNs enables effective, cost-efficient, and reliable decarbonization of the building sector in densified areas
- 6 million German households (= 14%) are connected to DHNs
- > 33% of Berlin's heat market are covered by



## **Decarbonization Roadmap Berlin**






12. April 2024

## The Model





- High modeling flexibility
- Highly detailed
- Fine granularity

- Out-of-the-box use of solvers
- Performance
   plateau reached
- Highly restrictive (short-term, single objective, etc.)

## The Model







MILP-formulation: combining unit commitment and investment planning

$$\begin{array}{ll} \min_{\hat{z},z,s,x,h} \ c^{inv}(\hat{z}) + \sum_{t \in T} c_t(z_t,s_t,x_t,h_t) & (Investment and operational cost) \\ \text{s.t.} \ z_t \leq \hat{z} & \forall t \in T & (Status depending on investment) \\ A_t^{act,s}(s_t) + \sum_{\tau \in T_t^{act}} A_\tau^{act,z}(z_\tau) \leq b_t^{act} & \forall t \in T & (Activation, minimum up and down time) \\ A_t^{storage}(x_t,h_t,h_{t+1}) = 0 & \forall t \in T & (Storage constraints) \\ D_t(z_t,s_t,x_t,h_t) \leq d_t & \forall t \in T & (Operational constraints: fuel purchase, produced heat, demands, ...) \\ x_t,h_t \geq 0 & \forall t \in T & (Non-negativity) \end{array}$$

| <i>î</i> binary          | (Investment variables)                                        |
|--------------------------|---------------------------------------------------------------|
| z <sub>t</sub> binary    | (Status variables: whether power plant is active or inactive) |
| s <sub>t</sub> binary    | (Activation variables: whether start-up happened)             |
| $x_t$ binary, continuous | (Operation variables: purchased fuel, produced power,)        |
| $h_t$ continuous         | (Storage variables)                                           |

#### ~300M Variables (~15M binary) ~300M constraints

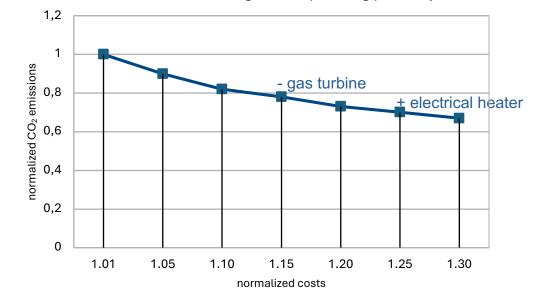


#### Instance:

- district heating network of Berlin (Verbundnetz)
- + 38 strategically chosen potential investments

#### Goal:

- explore different transformation pathways on achieving decarbonization targets in line with reasonable economic decisions.
- $\rightarrow$  two objectives: costs, CO<sub>2</sub>-emissions


#### Method:

- over 25 years (2020 2045)
- 24-hourly granularity
- lexicographic optimization
- varying cost tolerance gaps ranging up to 30% of the cost optimum
- increments of 5%



| Costs | CO <sub>2</sub> | No. of<br>Investments |  |  |
|-------|-----------------|-----------------------|--|--|
| 101%  | 100%            | 11                    |  |  |
| 105%  | 90%             | 11                    |  |  |
| 110%  | 82%             | 11                    |  |  |
| 115%  | 78%             | 10                    |  |  |
| 120%  | 73%             | 10                    |  |  |
| 125%  | 70%             | 11                    |  |  |
| 130%  | 67%             | 11                    |  |  |

Trade-offs including corrresponding pathways





| Costs | CO2  | No. of<br>Investments |  |  |
|-------|------|-----------------------|--|--|
| 101%  | 100% | 11                    |  |  |
| 105%  | 90%  | 11                    |  |  |
| 110%  | 82%  | 11                    |  |  |
| 115%  | 78%  | 10                    |  |  |
| 120%  | 73%  | 10                    |  |  |
| 125%  | 70%  | 11                    |  |  |
| 130%  | 67%  | 11                    |  |  |

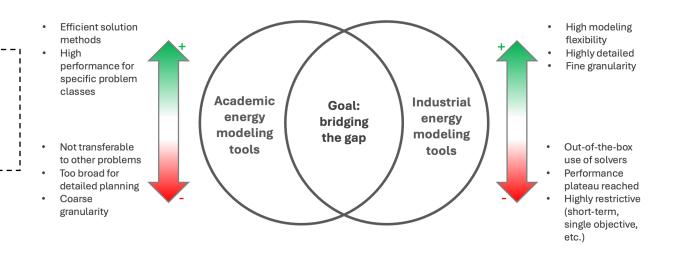
Trade-offs including corrresponding pathways 1,2 normalized  $CO_2$  emissions 9'0 9'' - gas turbine ± electrical heater difference solely in operational decisions 0,2 0 1.01 1.05 1.10 1.15 1.20 1.25 1.30 normalized costs

→ Integrating investment planning into unit commitment is important to make informed decisions!

## Results



| Costs                                                                 | 101% | 105% | 110% | 115% | 120% | 125% | 130% |                                                                              |
|-----------------------------------------------------------------------|------|------|------|------|------|------|------|------------------------------------------------------------------------------|
| CO <sub>2</sub>                                                       | 100% | 90%  | 82%  | 78%  | 73%  | 70%  | 67%  |                                                                              |
| СНР                                                                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | h                                                                            |
| СНР                                                                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | <ul> <li>robust investments</li> <li>target-dependent investments</li> </ul> |
| Block CHP                                                             | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| CCGT                                                                  | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| Heating station (Wood)                                                | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| Gas turbine upgrade                                                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| Gas turbine                                                           | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| Gas turbine                                                           | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| Gas turbine                                                           | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| Gas turbine                                                           | 1    | 1    | 1    | 1    | 1    | 1    | 1    |                                                                              |
| Gas turbine                                                           | 1    | 1    | 1    | 0    | 0    | 0    | 0    |                                                                              |
| Electrical heater 120 MW                                              | 0    | 0    | 0    | 0    | 0    | 1    | 1    |                                                                              |
| Seasonal Storage, heating station, electrical heater, heat pump, etc. | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                                                                              |


12. April 2024



we showed that solving the model with long-term investments and finding pathways with reasonable trade-offs is possible, <u>but:</u>

- × not efficiently solvable (e.g. the computation of a cost optimal solution takes >50h)
- $\times\,$  solvable only under restrictions in time granularity and increased MIP-gap
- X large model size

→ Remodeling the district heating network could potentially improve efficiency under small decrease in accuracy of the model.





Clarner, Tawfik, Koch, Zittel: Network-induced Unit Commitment – A model class for investment and production portfolio planning for multi-energy systems ZIB-Report, 2022.



## Thank you!